Suppr超能文献

远程光电容积脉搏波与运动跟踪卷积神经网络结合双向长短时记忆:基于多模态融合的非侵入式疲劳检测方法。

Remote Photoplethysmography and Motion Tracking Convolutional Neural Network with Bidirectional Long Short-Term Memory: Non-Invasive Fatigue Detection Method Based on Multi-Modal Fusion.

机构信息

School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China.

School of Computer Science, Central South University, Changsha 410083, China.

出版信息

Sensors (Basel). 2024 Jan 11;24(2):0. doi: 10.3390/s24020455.

Abstract

Existing vision-based fatigue detection methods commonly utilize RGB cameras to extract facial and physiological features for monitoring driver fatigue. These features often include single indicators such as eyelid movement, yawning frequency, and heart rate. However, the accuracy of RGB cameras can be affected by factors like varying lighting conditions and motion. To address these challenges, we propose a non-invasive method for multi-modal fusion fatigue detection called RPPMT-CNN-BiLSTM. This method incorporates a feature extraction enhancement module based on the improved Pan-Tompkins algorithm and 1D-MTCNN. This enhances the accuracy of heart rate signal extraction and eyelid features. Furthermore, we use one-dimensional neural networks to construct two models based on heart rate and PERCLOS values, forming a fatigue detection model. To enhance the robustness and accuracy of fatigue detection, the trained model data results are input into the BiLSTM network. This generates a time-fitting relationship between the data extracted from the CNN, allowing for effective dynamic modeling and achieving multi-modal fusion fatigue detection. Numerous experiments validate the effectiveness of the proposed method, achieving an accuracy of 98.2% on the self-made MDAD (Multi-Modal Driver Alertness Dataset). This underscores the feasibility of the algorithm. In comparison with traditional methods, our approach demonstrates higher accuracy and positively contributes to maintaining traffic safety, thereby advancing the field of smart transportation.

摘要

现有的基于视觉的疲劳检测方法通常使用 RGB 相机来提取面部和生理特征,以监测驾驶员的疲劳状态。这些特征通常包括单指标,如眼睑运动、打哈欠频率和心率。然而,RGB 相机的准确性可能会受到不同光照条件和运动等因素的影响。为了解决这些挑战,我们提出了一种名为 RPPMT-CNN-BiLSTM 的非侵入式多模态融合疲劳检测方法。该方法结合了基于改进的 Pan-Tompkins 算法和 1D-MTCNN 的特征提取增强模块。这提高了心率信号提取和眼睑特征的准确性。此外,我们使用一维神经网络构建了两个基于心率和 PERCLOS 值的模型,形成了一个疲劳检测模型。为了提高疲劳检测的鲁棒性和准确性,将训练模型的数据结果输入到 BiLSTM 网络中。这在从 CNN 中提取的数据之间生成了一个时间拟合关系,实现了有效的动态建模,并实现了多模态融合疲劳检测。大量实验验证了所提出方法的有效性,在自制的 MDAD(多模态驾驶员警觉数据集)上达到了 98.2%的准确率。这突出了该算法的可行性。与传统方法相比,我们的方法表现出更高的准确性,积极有助于维护交通安全,从而推动智能交通领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ec/11154312/4ce3e4914efa/sensors-24-00455-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验