Huang Zhaodong, Wang Tairan, Li Xinliang, Cui Huilin, Liang Guojin, Yang Qi, Chen Ze, Chen Ao, Guo Ying, Fan Jun, Zhi Chunyi
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong SAR, 999077, China.
Adv Mater. 2022 Jan;34(4):e2106180. doi: 10.1002/adma.202106180. Epub 2021 Nov 28.
High-voltage aqueous rechargeable batteries are promising competitors for next-generation energy storage systems with safety and high specific energy, but they are limited by the absence of low-cost aqueous electrolytes with a wide electrochemical stability window (ESW). The decomposition of aqueous electrolytes is mainly facilitated by the hydrogen bond network between water molecules and the water molecules in the solvation sheath. Here, three types of small dipole molecules (small molecules containing a dipole; glycerol (Gly), erythritol (Et), and acrylamide (AM)) are reported to develop aqueous electrolytes with high safety and wide ESW (over 2.5 V) for aqueous lithium-, sodium-, and zinc-ion batteries, respectively. The solvation-sheath structures are explored by ab initio molecular dynamics (MD) simulations, demonstrating that three types of dipole molecules deplete the water molecules in the solvation sheath of the charge carrier and break the hydrogen bond network between the water molecules, thus effectively expanding the ESW. A battery constructed from lithium titanate and lithium manganate in Gly-containing electrolyte exhibits an output voltage of 2.45 V and retains a specific capacity of 119.6 mAh g after 400 cycles. This work provides another strategy for exploiting low-cost high-voltage electrolytes for aqueous energy-storage systems.
高压水系可充电电池有望成为下一代储能系统的有力竞争者,具备安全性和高比能量,但因缺乏具有宽电化学稳定窗口(ESW)的低成本水系电解质而受到限制。水系电解质的分解主要由水分子与溶剂化鞘层中的水分子之间的氢键网络促成。在此,据报道三种类型的小偶极分子(含有偶极的小分子;甘油(Gly)、赤藓糖醇(Et)和丙烯酰胺(AM))分别用于开发适用于水系锂、钠和锌离子电池的具有高安全性和宽ESW(超过2.5 V)的水系电解质。通过从头算分子动力学(MD)模拟探索了溶剂化鞘层结构,表明三种类型的偶极分子消耗了电荷载体溶剂化鞘层中的水分子并打破了水分子之间的氢键网络,从而有效地扩大了ESW。由钛酸锂和锰酸锂在含甘油的电解质中构建的电池输出电压为2.45 V,在400次循环后比容量保持在119.6 mAh g。这项工作为开发用于水系储能系统的低成本高压电解质提供了另一种策略。