Suppr超能文献

由混杂 l-苏氨酸转醛醇酶 ObiH 催化的可扩展和选择性 β-羟基-α-氨基酸合成。

Scalable and Selective β-Hydroxy-α-Amino Acid Synthesis Catalyzed by Promiscuous l-Threonine Transaldolase ObiH.

机构信息

Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.

Department of Chemistry, Ripon College, Ripon, WI 54971, USA.

出版信息

Chembiochem. 2022 Jan 19;23(2):e202100577. doi: 10.1002/cbic.202100577. Epub 2021 Nov 15.

Abstract

Enzymes from secondary metabolic pathways possess broad potential for the selective synthesis of complex bioactive molecules. However, the practical application of these enzymes for organic synthesis is dependent on the development of efficient, economical, operationally simple, and well-characterized systems for preparative scale reactions. We sought to bridge this knowledge gap for the selective biocatalytic synthesis of β-hydroxy-α-amino acids, which are important synthetic building blocks. To achieve this goal, we demonstrated the ability of ObiH, an l-threonine transaldolase, to achieve selective milligram-scale synthesis of a diverse array of non-standard amino acids (nsAAs) using a scalable whole cell platform. We show how the initial selectivity of the catalyst is high and how the diastereomeric ratio of products decreases at high conversion due to product re-entry into the catalytic cycle. ObiH-catalyzed reactions with a variety of aromatic, aliphatic and heterocyclic aldehydes selectively generated a panel of β-hydroxy-α-amino acids possessing broad functional-group diversity. Furthermore, we demonstrated that ObiH-generated β-hydroxy-α-amino acids could be modified through additional transformations to access important motifs, such as β-chloro-α-amino acids and substituted α-keto acids.

摘要

次生代谢途径中的酶具有选择性合成复杂生物活性分子的广泛潜力。然而,这些酶在有机合成中的实际应用取决于高效、经济、操作简单且经过充分表征的制备规模反应系统的开发。我们旨在为β-羟基-α-氨基酸的选择性生物催化合成填补这一知识空白,这些氨基酸是重要的合成构建块。为了实现这一目标,我们展示了 ObiH(l-苏氨酸转醛酶)的能力,该酶能够使用可扩展的全细胞平台实现各种非标准氨基酸(nsAAs)的选择性毫克级合成。我们展示了催化剂的初始选择性如何高,以及由于产物重新进入催化循环,产物的非对映体比例如何在高转化率下降低。ObiH 催化的各种芳香族、脂肪族和杂环醛的反应选择性地生成了一系列具有广泛官能团多样性的β-羟基-α-氨基酸。此外,我们证明,ObiH 生成的β-羟基-α-氨基酸可以通过进一步的转化来修饰,以获得重要的结构单元,如β-氯-α-氨基酸和取代的α-酮酸。

相似文献

引用本文的文献

1
Chemoenzymatic Cascade Synthesis of Metal-Chelating -Amino Acids.金属螯合α-氨基酸的化学酶级联合成
ChemCatChem. 2025 Mar 6;17(5). doi: 10.1002/cctc.202401958. Epub 2024 Dec 9.
4
Biocatalytic asymmetric aldol addition into unactivated ketones.生物催化不对称羟醛加成反应引入未活化酮中。
Nat Chem. 2024 Dec;16(12):2076-2083. doi: 10.1038/s41557-024-01647-1. Epub 2024 Sep 27.

本文引用的文献

1
Broadening the scope of biocatalytic C-C bond formation.拓宽生物催化碳-碳键形成的范围。
Nat Rev Chem. 2020 Jul;4:334-346. doi: 10.1038/s41570-020-0191-2. Epub 2020 Jun 3.
5
Biosynthesis and Mechanism of Action of the Cell Wall Targeting Antibiotic Hypeptin.细胞壁靶向抗生素 Hypptin 的生物合成与作用机制。
Angew Chem Int Ed Engl. 2021 Jun 7;60(24):13579-13586. doi: 10.1002/anie.202102224. Epub 2021 May 7.
9
Next-Generation Total Synthesis of Vancomycin.万古霉素的下一代全合成。
J Am Chem Soc. 2020 Sep 16;142(37):16039-16050. doi: 10.1021/jacs.0c07433. Epub 2020 Sep 4.
10
Tryptophan Synthase: Biocatalyst Extraordinaire.色氨酸合酶:非凡的生物催化剂。
Chembiochem. 2021 Jan 5;22(1):5-16. doi: 10.1002/cbic.202000379. Epub 2020 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验