Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Department of Biochemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
ACS Chem Biol. 2021 Jan 15;16(1):86-95. doi: 10.1021/acschembio.0c00753. Epub 2020 Dec 18.
l-Threonine transaldolases (lTTAs) are a poorly characterized class of pyridoxal-5'-phosphate (PLP) dependent enzymes responsible for the biosynthesis of diverse β-hydroxy amino acids. Here, we study the catalytic mechanism of ObiH, an lTTA essential for biosynthesis of the β-lactone natural product obafluorin. Heterologously expressed ObiH purifies as a mixture of chemical states including a catalytically inactive form of the PLP cofactor. Photoexcitation of ObiH promotes the conversion of the inactive state of the enzyme to the active form. UV-vis spectroscopic analysis reveals that ObiH catalyzes the retro-aldol cleavage of l-threonine to form a remarkably persistent glycyl quinonoid intermediate, with a half-life of ∼3 h. Protonation of this intermediate is kinetically disfavored, enabling on-cycle reactivity with aldehydes to form β-hydroxy amino acids. We demonstrate the synthetic potential of ObiH via the single step synthesis of (2,3)-β-hydroxyleucine. To further understand the structural features underpinning this desirable reactivity, we determined the crystal structure of ObiH bound to PLP as the Schiff's base at 1.66 Å resolution. This high-resolution model revealed a unique active site configuration wherein the evolutionarily conserved Asp that traditionally H-bonds to the cofactor is swapped for a neighboring Glu. Molecular dynamics simulations combined with mutagenesis studies indicate that a structural rearrangement is associated with l-threonine entry into the catalytic cycle. Together, these data explain the basis for the unique reactivity of lTTA enzymes and provide a foundation for future engineering and mechanistic analysis.
l-苏氨酸转醛醇酶(lTTAs)是一类特征不明显的吡哆醛-5'-磷酸(PLP)依赖性酶,负责多种β-羟氨基酸的生物合成。在这里,我们研究了 ObiH 的催化机制,ObiH 是β-内酰胺天然产物 obafluorin 生物合成所必需的 lTTA。异源表达的 ObiH 以包括 PLP 辅因子无活性形式的混合物形式纯化。ObiH 的光激发促进酶的无活性状态向活性形式的转化。紫外可见光谱分析表明,ObiH 催化 l-苏氨酸的 retro-aldol 裂解,形成一种非常持久的甘氨酰醌亚胺中间体,半衰期约为 3 小时。该中间体的质子化在动力学上是不利的,使其能够与醛反应形成β-羟氨基酸。我们通过(2,3)-β-羟基亮氨酸的单步合成证明了 ObiH 的合成潜力。为了进一步了解支持这种理想反应性的结构特征,我们确定了 ObiH 与 PLP 结合的晶体结构作为希夫碱,分辨率为 1.66 Å。该高分辨率模型揭示了一个独特的活性位点构型,其中传统上与辅因子形成氢键的进化保守的 Asp 被相邻的 Glu 取代。分子动力学模拟结合突变研究表明,结构重排与 l-苏氨酸进入催化循环有关。总之,这些数据解释了 lTTA 酶独特反应性的基础,并为未来的工程和机制分析提供了基础。