Bruffy Samantha K, Meza Anthony, Soler Jordi, Doyon Tyler J, Young Seth H, Lim Jooyeon, Huseth Kathryn G, Willoughby Patrick H, Garcia-Borràs Marc, Buller Andrew R
Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
Nat Chem. 2024 Dec;16(12):2076-2083. doi: 10.1038/s41557-024-01647-1. Epub 2024 Sep 27.
Enzymes are renowned for their catalytic efficiency and selectivity, but many classical transformations in organic synthesis have no biocatalytic counterpart. Aldolases are prodigious C-C bond-forming enzymes, but their reactivity has only been extended past activated carbonyl electrophiles in special cases. To probe the mechanistic origins of this limitation, we use a pair of aldolases whose activity is dependent on pyridoxal phosphate. Our results reveal how aldolases are limited by kinetically favourable proton transfer with solvent, which undermines aldol addition into ketones. We show how a transaldolase can circumvent this limitation, enabling efficient addition into unactivated ketones. The resulting products are highly sought non-canonical amino acids with side chains that contain chiral tertiary alcohols. Mechanistic analysis reveals that transaldolase activity is an intrinsic feature of pyridoxal phosphate chemistry and identifies principles for extending aldolase catalysis beyond its previous limits to enable convergent, enantioselective C-C bond formation from simple starting materials.
酶以其催化效率和选择性而闻名,但有机合成中的许多经典转化没有生物催化对应物。醛缩酶是强大的碳-碳键形成酶,但在特殊情况下,其反应活性仅扩展到活性羰基亲电试剂之外。为了探究这种限制的机制根源,我们使用了一对活性依赖于磷酸吡哆醛的醛缩酶。我们的结果揭示了醛缩酶如何受到与溶剂进行动力学有利的质子转移的限制,这破坏了醛醇加成到酮中。我们展示了转醛缩酶如何能够规避这种限制,实现高效加成到未活化的酮中。所得产物是备受追捧的非天然氨基酸,其侧链含有手性叔醇。机理分析表明,转醛缩酶活性是磷酸吡哆醛化学的固有特征,并确定了将醛缩酶催化扩展到其先前限制之外的原则,以实现从简单起始原料进行收敛性对映选择性碳-碳键形成。