Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
Key Laboratory of Molecular Biophysics of the Ministry of Education, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China.
Acta Biomater. 2023 Jun;163:326-338. doi: 10.1016/j.actbio.2021.10.029. Epub 2021 Oct 23.
There is increasing evidence that force impacts almost every aspect of cells and tissues in physiology and disease including gene regulation. However, the molecular pathway of force transmission from the nuclear lamina to the chromatin remain largely elusive. Here we employ two different approaches of a local stress on cell apical surface via an RGD (Arg-Gly-Asp)-coated magnetic bead and whole cell deformation at cell basal surface via uniaxial or biaxial deformation of a fibronectin-coated flexible polydimethylsiloxane substrate. We find that nuclear protein LAP2β mediates force transmission from the nuclear lamina to the chromatin. Knocking down LAP2β increases spontaneous movements of the chromatin by reducing tethering of the chromatin and substantially inhibits the magnetic bead-stress or the substrate-deformation induced chromatin domain stretching and the ensuing dihydrofolate reductase (DHFR) gene upregulation. Analysis of DHFR gene-containing chromatin domain alignments along or perpendicular to the direction of the stretching/compressing reveals that the chromatin domain must be stretched and not compressed in order for the gene to be rapidly upregulated. Together these results suggest that external-load induced rapid transcription upregulation originates from chromatin domain stretching but not compressing and depends on the molecular force transmission pathway of LAP2β. STATEMENT OF SIGNIFICANCE: How force regulates gene expression has been elusive. Here we show that the orientation of the chromatin domain relative to the stress direction is crucial in determining if the chromatin domain will be stretched or compressed in response to a cell surface loading. We also show that nuclear protein Lap2b is a critical molecule that mediates force transmission from the nuclear laminar to the chromatin to regulate gene transcription. This study reveals the molecular force transmission pathway for force-induced gene regulation.
越来越多的证据表明,力几乎影响到生理和疾病过程中细胞和组织的各个方面,包括基因调控。然而,核层到染色质的力传递的分子途径在很大程度上仍然难以捉摸。在这里,我们通过 RGD(精氨酸-甘氨酸-天冬氨酸)涂层磁珠对细胞顶表面施加局部应力和通过单轴或双轴拉伸纤维连接蛋白涂层的柔性聚二甲基硅氧烷基底对细胞基底表面施加整体变形这两种不同的方法,研究力从核层传递到染色质的过程。我们发现核蛋白 LAP2β 介导核层到染色质的力传递。敲低 LAP2β 通过减少染色质的束缚,增加染色质的自发运动,并显著抑制磁珠力或基底变形诱导的染色质域拉伸以及随后的二氢叶酸还原酶(DHFR)基因上调。分析沿着或垂直于拉伸/压缩方向排列的含有 DHFR 基因的染色质域可知,为了使基因快速上调,染色质域必须被拉伸而不是被压缩。这些结果表明,外部负载诱导的快速转录上调源自染色质域的拉伸而不是压缩,并且依赖于 LAP2β 的分子力传递途径。
力如何调节基因表达一直难以捉摸。在这里,我们表明染色质域相对于应力方向的取向对于确定染色质域在响应细胞表面加载时是被拉伸还是被压缩至关重要。我们还表明,核蛋白 Lap2b 是一种关键分子,它介导核层到染色质的力传递,以调节基因转录。这项研究揭示了力诱导基因调控的分子力传递途径。