Suppr超能文献

卒中中大动脉闭塞的自动检测:人工智能算法的单中心验证研究

Automated Large Artery Occlusion Detection in Stroke: A Single-Center Validation Study of an Artificial Intelligence Algorithm.

作者信息

Rodrigues Gabriel, Barreira Clara M, Bouslama Mehdi, Haussen Diogo C, Al-Bayati Alhamza, Pisani Leonardo, Liberato Bernardo, Bhatt Nirav, Frankel Michael R, Nogueira Raul G

机构信息

Emory University, Marcus Stroke & Neuroscience Center, Grady Memorial Hospital, Atlanta, Georgia,

Emory University, Marcus Stroke & Neuroscience Center, Grady Memorial Hospital, Atlanta, Georgia.

出版信息

Cerebrovasc Dis. 2022;51(2):259-264. doi: 10.1159/000519125. Epub 2021 Oct 28.

Abstract

INTRODUCTION

Expediting notification of lesions in acute ischemic stroke (AIS) is critical. Limited availability of experts to assess such lesions and delays in large vessel occlusion (LVO) recognition can negatively affect outcomes. Artificial intelligence (AI) may aid LVO recognition and treatment. This study aims to evaluate the performance of an AI-based algorithm for LVO detection in AIS.

METHODS

Retrospective analysis of a database of AIS patients admitted in a single center between 2014 and 2019. Vascular neurologists graded computed tomography angiographies (CTAs) for presence and site of LVO. Studies were analyzed by the Viz-LVO Algorithm® version 1.4 - neural network programmed to detect occlusions from the internal carotid artery terminus (ICA-T) to the Sylvian fissure. Comparisons between human versus AI-based readings were done by test characteristic analysis and Cohen's kappa. Primary analysis included ICA-T and/or middle cerebral artery (MCA)-M1 LVOs versus non-LVOs/more distal occlusions. Secondary analysis included MCA-M2 occlusions.

RESULTS

610 CTAs were analyzed. The AI algorithm rejected 2.5% of the CTAs due to poor quality, which were excluded from the analysis. Viz-LVO identified ICA-T and MCA-M1 LVOs with a sensitivity of 87.6%, specificity of 88.5%, and accuracy of 87.9% (AUC 0.88, 95% CI: 0.85-0.92, p < 0.001). Cohen's kappa was 0.74. In the secondary analysis, the algorithm yielded a sensitivity of 80.3%, specificity of 88.5%, and accuracy of 82.7%. The mean run time of the algorithm was 2.78 ± 0.5 min.

CONCLUSION

Automated AI reading allows for fast and accurate identification of LVO strokes with timely notification to emergency teams, enabling quick decision-making for reperfusion therapies or transfer to specialized centers if needed.

摘要

引言

加快急性缺血性卒中(AIS)病变的通知至关重要。评估此类病变的专家数量有限以及大血管闭塞(LVO)识别的延迟会对治疗结果产生负面影响。人工智能(AI)可能有助于LVO的识别和治疗。本研究旨在评估基于AI的算法在AIS中检测LVO的性能。

方法

对2014年至2019年间在单一中心收治的AIS患者数据库进行回顾性分析。血管神经科医生对计算机断层血管造影(CTA)进行LVO的存在和部位分级。研究采用Viz-LVO算法®1.4版进行分析,该神经网络被编程用于检测从颈内动脉末端(ICA-T)到大脑外侧裂的闭塞情况。通过测试特征分析和科恩kappa系数对人工解读与基于AI的解读进行比较。主要分析包括ICA-T和/或大脑中动脉(MCA)-M1段LVO与非LVO/更远端闭塞情况。次要分析包括MCA-M2段闭塞情况。

结果

共分析了610份CTA。AI算法因质量差拒收了2.5%的CTA,这些被排除在分析之外。Viz-LVO识别ICA-T和MCA-M1段LVO的灵敏度为87.6%,特异度为88.5%,准确率为87.9%(AUC 0.88,95%CI:0.85 - 0.92,p < 0.001)。科恩kappa系数为0.74。在次要分析中,该算法的灵敏度为80.3%,特异度为88.5%,准确率为82.7%。该算法的平均运行时间为2.78±0.5分钟。

结论

自动AI解读能够快速准确地识别LVO卒中,并及时通知急救团队,以便在需要时为再灌注治疗或转至专科中心做出快速决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验