Suppr超能文献

基于人工智能的颅内大血管闭塞检测的自动脑卒中 CT 工作流程的持续时间和准确性。

Duration and accuracy of automated stroke CT workflow with AI-supported intracranial large vessel occlusion detection.

机构信息

Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 766, PO Box 9101, 6500HB, Nijmegen, The Netherlands.

出版信息

Sci Rep. 2023 Aug 2;13(1):12551. doi: 10.1038/s41598-023-39831-x.

Abstract

The Automation Platform (AP) is a software platform to support the workflow of radiologists and includes a stroke CT package with integrated artificial intelligence (AI) based tools. The aim of this study was to evaluate the diagnostic performance of the AP for the detection of intracranial large vessel occlusions (LVO) on conventional CT angiography (CTA), and the duration of CT processing in a cohort of acute stroke patients. The diagnostic performance for intracranial LVO detection on CTA by the AP was evaluated in a retrospective cohort of 100 acute stroke patients and compared to the diagnostic performance of five radiologists with different levels of experience. The reference standard was set by an independent neuroradiologist, with access to the readings of the different radiologists, clinical data, and follow-up. The data processing time of the AP for ICH detection on non-contrast CT, LVO detection on CTA, and the processing of CTP maps was assessed in a subset 60 patients of the retrospective cohort. This was compared to 13 radiologists, who were prospectively timed for the processing and reading of 21 stroke CTs. The AP showed shorter processing time of CTA (mean 60 versus 395 s) and CTP (mean 196 versus 243-349 s) as compared to radiologists, but showed lower sensitivity for LVO detection (sensitivity 77% of the AP vs mean sensitivity 87% of radiologists). If the AP would have been used as a stand-alone system, 1 ICA occlusion, 2 M1 occlusions and 8 M2 occlusions would have been missed, which would be eligible for mechanical thrombectomy. In conclusion, the AP showed shorter processing time of CTA and CTP as compared with radiologists, which illustrates the potential of the AP to speed-up the diagnostic work-up. However, its performance for LVO detection was lower as compared with radiologists, especially for M2 vessel occlusions.

摘要

自动化平台 (AP) 是一个支持放射科工作流程的软件平台,其中包括一个带有基于人工智能 (AI) 的集成工具的卒中 CT 包。本研究旨在评估 AP 在急性卒中患者中对常规 CT 血管造影 (CTA) 颅内大血管闭塞 (LVO) 的检测的诊断性能,以及 CT 处理的持续时间。通过回顾性队列研究,评估了 AP 在 100 例急性卒中患者中对 CTA 颅内 LVO 检测的诊断性能,并与 5 名不同经验水平的放射科医生的诊断性能进行了比较。参考标准由一名独立的神经放射科医生设定,他可以访问不同放射科医生的读数、临床数据和随访。在回顾性队列的 60 例患者亚组中,评估了 AP 用于非对比 CT 检测 ICH、CTA 检测 LVO 和 CTP 图处理的处理时间。这与 13 名放射科医生进行了前瞻性比较,他们对 21 例卒中 CT 进行了处理和阅读。AP 在 CTA(平均 60 秒与 395 秒)和 CTP(平均 196 秒与 243-349 秒)的处理时间比放射科医生短,但 LVO 检测的敏感性较低(AP 的敏感性为 77%,放射科医生的平均敏感性为 87%)。如果 AP 被用作独立系统,将会漏诊 1 例颈内动脉闭塞、2 例 M1 闭塞和 8 例 M2 闭塞,这些患者有资格进行机械血栓切除术。总之,AP 在 CTA 和 CTP 的处理时间上比放射科医生短,这表明 AP 有潜力加快诊断工作流程。然而,其 LVO 检测性能低于放射科医生,尤其是对于 M2 血管闭塞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b761/10397283/ac2e815c48c2/41598_2023_39831_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验