Suppr超能文献

基于深度学习利用高分辨率光子计数计算机断层扫描和传统多探测器计算机断层扫描检测急性缺血性卒中的大血管闭塞

Deep Learning Based Detection of Large Vessel Occlusions in Acute Ischemic Stroke Using High-Resolution Photon Counting Computed Tomography and Conventional Multidetector Computed Tomography.

作者信息

Boriesosdick Jan, Shahzadi Iram, Xie Long, Georgescu Bogdan, Gibson Eli, Frohwein Lynn Johann, Saeed Saher, Haag Nina P, Horstmeier Sebastian, Moenninghoff Christoph, Niehoff Julius Henning, Surov Alexey, Borggrefe Jan, Kroeger Jan Robert

机构信息

Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany.

Siemens Healthineers AG, Erlangen, Germany.

出版信息

Clin Neuroradiol. 2025 Mar;35(1):185-195. doi: 10.1007/s00062-024-01471-7. Epub 2024 Nov 25.

Abstract

PURPOSE

Deep learning (DL) methods for detecting large vessel occlusion (LVO) in acute ischemic stroke (AIS) show promise, but the effect of computed tomography angiography (CTA) image quality on DL performance is unclear. Our study investigates the impact of improved image quality from Photon Counting Computed Tomography (PCCT) on LVO detection in AIS using a DL-based software prototype developed by a commercial vendor, which incorporates a novel deep learning architecture.

MATERIALS AND METHODS

443 cases that underwent stroke diagnostics with CTA were included. Positive cases featured vascular occlusions in the Internal Carotid Artery (ICA), M1, and M2 segments of the Middle Cerebral Artery (MCA). Negative cases showed no vessel occlusion on CTA. The performance of the DL-based LVO detection software prototype was assessed using Syngo.via version VB80.

RESULTS

Our study included 267 non-occlusion cases and 176 cases. Among them, 150 cases were scanned via PCCT (no occlusion = 100, ICA and M1 = 41, M2 = 9), while 293 cases were scanned using conventional CT (no occlusion = 167, ICA and M1 = 89, M2 = 37). Independent of scanner type, the algorithm showed sensitivity and specificity of 70.5 and 98.9% for the detection of all occlusions. DL algorithm showed improved performance after excluding M2 occlusions (sensitivity 86.2%). After stratification by scanner type, the algorithm showed significantly a trend towards better performance (p = 0.013) on PCCT CTA images for the detection of all occlusions (sensitivity 84.0%, specificity 99%) compared to CTA images from conventional CT scanner (sensitivity 65.1%, specificity 98.8%). The detection of M2 occlusions was also better on PCCT CTA images (sensitivity 55.6%) compared to conventional scanner CTA images (sensitivity 18.9%), but the sample size for M2 occlusions was limited, and further research is needed to confirm these findings.

CONCLUSION

Our study suggests that PCCT CTA images may offer improved detection of large vessel occlusion, particularly for M2 occlusions. However further research is needed to confirm these findings. One of the limitations of our study is the inability to exclude the presence of a perfusion deficit, despite ruling out vascular occlusion, due to the lack of CT perfusion (CTP) imaging data. Future research may investigate CNNs by leveraging both CTA and CTP images from PCCT for improved performance.

摘要

目的

深度学习(DL)方法在急性缺血性卒中(AIS)大血管闭塞(LVO)检测中显示出前景,但计算机断层血管造影(CTA)图像质量对DL性能的影响尚不清楚。我们的研究使用商业供应商开发的基于DL的软件原型,研究了光子计数计算机断层扫描(PCCT)改善的图像质量对AIS中LVO检测的影响,该软件原型采用了一种新型深度学习架构。

材料与方法

纳入443例行CTA卒中诊断的病例。阳性病例的颈内动脉(ICA)、大脑中动脉(MCA)的M1和M2段存在血管闭塞。阴性病例在CTA上未显示血管闭塞。使用Syngo.via版本VB80评估基于DL的LVO检测软件原型的性能。

结果

我们的研究包括267例非闭塞病例和176例闭塞病例。其中,150例通过PCCT扫描(无闭塞=100例,ICA和M1=41例,M2=9例),而293例使用传统CT扫描(无闭塞=167例,ICA和M1=89例,M2=37例)。与扫描仪类型无关,该算法检测所有闭塞的敏感性和特异性分别为70.5%和98.9%。排除M2段闭塞后,DL算法性能有所改善(敏感性86.2%)。按扫描仪类型分层后,与传统CT扫描仪的CTA图像(敏感性65.1%,特异性98.8%)相比,该算法在PCCT CTA图像上检测所有闭塞的性能有显著更好的趋势(p=0.013)(敏感性84.0%,特异性99%)。与传统扫描仪CTA图像(敏感性18.9%)相比,PCCT CTA图像上M2段闭塞的检测也更好(敏感性55.6%),但M2段闭塞的样本量有限,需要进一步研究来证实这些发现。

结论

我们的研究表明,PCCT CTA图像可能在大血管闭塞检测方面有更好的表现,特别是对于M2段闭塞。然而,需要进一步研究来证实这些发现。我们研究的局限性之一是,尽管排除了血管闭塞,但由于缺乏CT灌注(CTP)成像数据,无法排除灌注缺损的存在。未来的研究可以通过利用PCCT的CTA和CTP图像来研究卷积神经网络(CNN)以提高性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验