Suppr超能文献

利用人工智能进行临床决策。

Accessing Artificial Intelligence for Clinical Decision-Making.

作者信息

Giordano Chris, Brennan Meghan, Mohamed Basma, Rashidi Parisa, Modave François, Tighe Patrick

机构信息

Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States.

J. Clayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.

出版信息

Front Digit Health. 2021 Jun 25;3:645232. doi: 10.3389/fdgth.2021.645232. eCollection 2021.

Abstract

Advancements in computing and data from the near universal acceptance and implementation of electronic health records has been formative for the growth of personalized, automated, and immediate patient care models that were not previously possible. Artificial intelligence (AI) and its subfields of machine learning, reinforcement learning, and deep learning are well-suited to deal with such data. The authors in this paper review current applications of AI in clinical medicine and discuss the most likely future contributions that AI will provide to the healthcare industry. For instance, in response to the need to risk stratify patients, appropriately cultivated and curated data can assist decision-makers in stratifying preoperative patients into risk categories, as well as categorizing the severity of ailments and health for non-operative patients admitted to hospitals. Previous overt, traditional vital signs and laboratory values that are used to signal alarms for an acutely decompensating patient may be replaced by continuously monitoring and updating AI tools that can pick up early imperceptible patterns predicting subtle health deterioration. Furthermore, AI may help overcome challenges with multiple outcome optimization limitations or sequential decision-making protocols that limit individualized patient care. Despite these tremendously helpful advancements, the data sets that AI models train on and develop have the potential for misapplication and thereby create concerns for application bias. Subsequently, the mechanisms governing this disruptive innovation must be understood by clinical decision-makers to prevent unnecessary harm. This need will force physicians to change their educational infrastructure to facilitate understanding AI platforms, modeling, and limitations to best acclimate practice in the age of AI. By performing a thorough narrative review, this paper examines these specific AI applications, limitations, and requisites while reviewing a few examples of major data sets that are being cultivated and curated in the US.

摘要

计算技术的进步以及电子健康记录几乎被普遍接受和实施所产生的数据,对个性化、自动化和即时患者护理模式的发展起到了决定性作用,而这些模式在以前是不可能实现的。人工智能(AI)及其机器学习、强化学习和深度学习等子领域非常适合处理此类数据。本文的作者回顾了人工智能在临床医学中的当前应用,并讨论了人工智能未来最有可能为医疗行业做出的贡献。例如,为了满足对患者进行风险分层的需求,经过适当收集和整理的数据可以帮助决策者将术前患者分层到不同的风险类别,以及对入院的非手术患者的疾病严重程度和健康状况进行分类。以前用于为急性失代偿患者发出警报的明显、传统的生命体征和实验室值,可能会被能够持续监测和更新的人工智能工具所取代,这些工具可以捕捉早期难以察觉的模式,预测细微的健康恶化。此外,人工智能可能有助于克服多重结果优化限制或顺序决策协议带来的挑战,这些限制会影响个性化患者护理。尽管有这些非常有帮助的进步,但人工智能模型所训练和开发的数据集有可能被误用,从而引发对应用偏差的担忧。随后,临床决策者必须了解管理这种颠覆性创新的机制,以防止不必要的伤害。这种需求将迫使医生改变他们的教育基础设施,以促进对人工智能平台、建模和局限性的理解,从而在人工智能时代更好地适应实践。通过进行全面的叙述性综述,本文在回顾美国正在收集和整理的一些主要数据集示例的同时,研究了这些特定的人工智能应用、局限性和要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e650/8521931/f1b410d85b5f/fdgth-03-645232-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验