Institut d'Électronique, Microélectronique et Nanotechnologies (IEMN) - CNRS UMR 8520 - Université de Lille, boulevard Poincarré, Villeneuve d'Ascq, 59652, France.
Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS UMI-3463 - 3IT, Sherbrooke, J1K 0A5, Canada.
Adv Sci (Weinh). 2021 Dec;8(24):e2102973. doi: 10.1002/advs.202102973. Epub 2021 Oct 29.
One of the major limitations of standard top-down technologies used in today's neuromorphic engineering is their inability to map the 3D nature of biological brains. Here, it is shown how bipolar electropolymerization can be used to engineer 3D networks of PEDOT:PSS dendritic fibers. By controlling the growth conditions of the electropolymerized material, it is investigated how dendritic fibers can reproduce structural plasticity by creating structures of controllable shape. Gradual topologies evolution is demonstrated in a multielectrode configuration. A detailed electrical characterization of the PEDOT:PSS dendrites is conducted through DC and impedance spectroscopy measurements and it is shown how organic electrochemical transistors (OECT) can be realized with these structures. These measurements reveal that quasi-static and transient response of OECTs can be adjusted by controlling dendrites' morphologies. The unique properties of organic dendrites are used to demonstrate short-term, long-term, and structural plasticity, which are essential features required for future neuromorphic hardware development.
目前神经形态工程中使用的标准自上而下技术的主要局限性之一是它们无法映射生物大脑的 3D 性质。在这里,展示了如何使用双极电聚合来工程化 PEDOT:PSS 树枝状纤维的 3D 网络。通过控制电聚合材料的生长条件,研究了树枝状纤维如何通过创建可控形状的结构来再现结构可塑性。在多电极配置中演示了逐渐的拓扑演变。通过直流和阻抗光谱测量对 PEDOT:PSS 树枝进行了详细的电特性表征,并展示了如何使用这些结构实现有机电化学晶体管 (OECT)。这些测量表明,通过控制树枝的形态可以调整 OECT 的准静态和瞬态响应。有机树枝的独特特性被用于演示短期、长期和结构可塑性,这是未来神经形态硬件发展所必需的关键特性。