Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden.
Department of Biomedical Engineering, Linköping University, Linköping, SE-581 83, Sweden.
Adv Sci (Weinh). 2023 May;10(14):e2207023. doi: 10.1002/advs.202207023. Epub 2023 Mar 19.
Future brain-computer interfaces will require local and highly individualized signal processing of fully integrated electronic circuits within the nervous system and other living tissue. New devices will need to be developed that can receive data from a sensor array, process these data into meaningful information, and translate that information into a format that can be interpreted by living systems. Here, the first example of interfacing a hardware-based pattern classifier with a biological nerve is reported. The classifier implements the Widrow-Hoff learning algorithm on an array of evolvable organic electrochemical transistors (EOECTs). The EOECTs' channel conductance is modulated in situ by electropolymerizing the semiconductor material within the channel, allowing for low voltage operation, high reproducibility, and an improvement in state retention by two orders of magnitude over state-of-the-art OECT devices. The organic classifier is interfaced with a biological nerve using an organic electrochemical spiking neuron to translate the classifier's output to a simulated action potential. The latter is then used to stimulate muscle contraction selectively based on the input pattern, thus paving the way for the development of adaptive neural interfaces for closed-loop therapeutic systems.
未来的脑机接口将需要对神经系统内的全集成电子电路和其他活体组织进行本地的、高度个体化的信号处理。需要开发新的设备,这些设备能够接收传感器阵列的数据,将这些数据处理成有意义的信息,并将信息转换为可以被活体系统解释的格式。在这里,报告了第一个将基于硬件的模式分类器与生物神经接口的示例。该分类器在可进化有机电化学晶体管 (EOECT) 阵列上实现了 Widrow-Hoff 学习算法。通过在通道内的半导体材料上电聚合来原位调制 EOECT 的通道电导,允许低电压操作、高重现性,并将状态保持时间提高了两个数量级,超过了最先进的 OECT 设备。使用有机电化学尖峰神经元将有机分类器与生物神经接口,将分类器的输出转换为模拟动作电位。然后,根据输入模式选择性地刺激肌肉收缩,从而为开发用于闭环治疗系统的自适应神经接口铺平道路。