School of Mathematics and Statistics, Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science and Technology, Changsha, Hunan, China.
School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan, China.
Int J Numer Method Biomed Eng. 2022 Jan;38(1):e3543. doi: 10.1002/cnm.3543. Epub 2021 Nov 18.
One difficulty in solving the Poisson-Nernst-Planck (PNP) equations used for studying the ion transport in channel proteins is the possible convection-dominant problem in the Nernst-Planck equations. In this paper, to overcome this issue, considering the general mixed boundary conditions of concentration functions on the interface, a novel stabilized finite volume element method based on the standard weak formulation to solve the steady-state PNP equations is proposed and analyzed. Numerical tests on four ion-channel proteins served as benchmark with varying boundary conditions in a certain range show that the new stabilized technique not only improves the robustness of the new PNP solver, but also makes the computed (especially the maximal) concentration values much more reasonable.
解决用于研究通道蛋白中离子传输的泊松-纳斯特-普朗克(PNP)方程的一个困难是纳斯特-普朗克方程中可能存在的对流占主导地位的问题。在本文中,为了克服这个问题,考虑到浓度函数在界面上的一般混合边界条件,提出并分析了一种基于标准弱形式的新型稳定有限体积元方法来求解稳态 PNP 方程。针对四个离子通道蛋白,在一定范围内改变边界条件进行了数值测试,结果表明,新的稳定技术不仅提高了新 PNP 求解器的鲁棒性,而且使计算出的(特别是最大的)浓度值更加合理。