Suppr超能文献

DINC-COVID:用于与柔性严重急性呼吸综合征冠状病毒2(SARS-CoV-2)蛋白进行整合对接的网络服务器。

DINC-COVID: A webserver for ensemble docking with flexible SARS-CoV-2 proteins.

作者信息

Hall-Swan Sarah, Devaurs Didier, Rigo Mauricio M, Antunes Dinler A, Kavraki Lydia E, Zanatta Geancarlo

机构信息

Department of Computer Science, Rice University, Houston, 77005, Texas, United States.

MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom.

出版信息

Comput Biol Med. 2021 Dec;139:104943. doi: 10.1016/j.compbiomed.2021.104943. Epub 2021 Oct 15.

Abstract

An unprecedented research effort has been undertaken in response to the ongoing COVID-19 pandemic. This has included the determination of hundreds of crystallographic structures of SARS-CoV-2 proteins, and numerous virtual screening projects searching large compound libraries for potential drug inhibitors. Unfortunately, these initiatives have had very limited success in producing effective inhibitors against SARS-CoV-2 proteins. A reason might be an often overlooked factor in these computational efforts: receptor flexibility. To address this issue we have implemented a computational tool for ensemble docking with SARS-CoV-2 proteins. We have extracted representative ensembles of protein conformations from the Protein Data Bank and from in silico molecular dynamics simulations. Twelve pre-computed ensembles of SARS-CoV-2 protein conformations have now been made available for ensemble docking via a user-friendly webserver called DINC-COVID (dinc-covid.kavrakilab.org). We have validated DINC-COVID using data on tested inhibitors of two SARS-CoV-2 proteins, obtaining good correlations between docking-derived binding energies and experimentally-determined binding affinities. Some of the best results have been obtained on a dataset of large ligands resolved via room temperature crystallography, and therefore capturing alternative receptor conformations. In addition, we have shown that the ensembles available in DINC-COVID capture different ranges of receptor flexibility, and that this diversity is useful in finding alternative binding modes of ligands. Overall, our work highlights the importance of accounting for receptor flexibility in docking studies, and provides a platform for the identification of new inhibitors against SARS-CoV-2 proteins.

摘要

针对持续的新冠疫情,人们展开了前所未有的研究工作。这包括测定数百种新冠病毒(SARS-CoV-2)蛋白的晶体结构,以及开展众多虚拟筛选项目,在大型化合物库中搜索潜在的药物抑制剂。不幸的是,这些举措在开发针对SARS-CoV-2蛋白的有效抑制剂方面成效甚微。一个原因可能是这些计算工作中一个常被忽视的因素:受体灵活性。为解决这个问题,我们开发了一种用于与SARS-CoV-2蛋白进行整合对接的计算工具。我们从蛋白质数据库和计算机模拟分子动力学中提取了具有代表性的蛋白构象集合。现在,通过一个名为DINC-COVID(dinc-covid.kavrakilab.org)的用户友好型网络服务器,已经可以获得12个预先计算好的SARS-CoV-2蛋白构象集合,用于整合对接。我们利用两种SARS-CoV-2蛋白的测试抑制剂数据对DINC-COVID进行了验证,对接得出的结合能与实验测定的结合亲和力之间具有良好的相关性。一些最佳结果是在通过室温晶体学解析的大型配体数据集上获得的,因此捕捉到了受体的不同构象。此外,我们还表明,DINC-COVID中可用的构象集合涵盖了不同范围的受体灵活性,这种多样性有助于发现配体的替代结合模式。总体而言,我们的工作突出了在对接研究中考虑受体灵活性的重要性,并为鉴定针对SARS-CoV-2蛋白的新抑制剂提供了一个平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37dd/8518241/18ecb581b8f8/ga1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验