Suppr超能文献

用于轨道确定的自适应和动态约束过程噪声估计

Adaptive and Dynamically Constrained Process Noise Estimation for Orbit Determination.

作者信息

Stacey Nathan, D'Amico Simone

机构信息

Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305 USA.

出版信息

IEEE Trans Aerosp Electron Syst. 2021 Oct;57(5):2920-2937. doi: 10.1109/taes.2021.3074205. Epub 2021 Apr 20.

Abstract

This paper introduces two new algorithms to accurately estimate the process noise covariance of a discrete-time Kalman filter online for robust orbit determination in the presence of dynamics model uncertainties. Common orbit determination process noise techniques, such as state noise compensation and dynamic model compensation, require offline tuning and a priori knowledge of the dynamical environment. Alternatively, the process noise covariance can be estimated through adaptive filtering. However, many adaptive filtering techniques are not applicable to onboard orbit determination due to computational cost or the assumption of a linear time-invariant system. Furthermore, existing adaptive filtering techniques do not constrain the process noise covariance according to the underlying continuous-time dynamical model, and there has been limited work on adaptive filtering with colored process noise. To overcome these limitations, a novel approach is developed which optimally fuses state noise compensation and dynamic model compensation with covariance matching adaptive filtering. This yields two adaptive and dynamically constrained process noise covariance estimation techniques. Unlike many adaptive filtering approaches, the new techniques accurately extrapolate over measurement outages and do not rely on ad hoc methods to ensure the process noise covariance is positive semi-definite. The benefits of the proposed algorithms are demonstrated through two case studies: an illustrative linear system and the autonomous navigation of two spacecraft orbiting an asteroid.

摘要

本文介绍了两种新算法,用于在存在动力学模型不确定性的情况下,在线准确估计离散时间卡尔曼滤波器的过程噪声协方差,以实现稳健的轨道确定。常见的轨道确定过程噪声技术,如状态噪声补偿和动态模型补偿,需要离线调整和动力学环境的先验知识。另外,过程噪声协方差可以通过自适应滤波来估计。然而,由于计算成本或线性时不变系统的假设,许多自适应滤波技术不适用于机载轨道确定。此外,现有的自适应滤波技术没有根据潜在的连续时间动力学模型来约束过程噪声协方差,并且关于有色过程噪声的自适应滤波的工作有限。为了克服这些限制,开发了一种新颖的方法,该方法将状态噪声补偿和动态模型补偿与协方差匹配自适应滤波进行了最优融合。这产生了两种自适应且动态约束的过程噪声协方差估计技术。与许多自适应滤波方法不同,新技术能够在测量中断期间进行准确外推,并且不依赖于临时方法来确保过程噪声协方差是半正定的。通过两个案例研究证明了所提出算法的优点:一个说明性的线性系统和两颗绕小行星运行的航天器的自主导航。

相似文献

1
Adaptive and Dynamically Constrained Process Noise Estimation for Orbit Determination.用于轨道确定的自适应和动态约束过程噪声估计
IEEE Trans Aerosp Electron Syst. 2021 Oct;57(5):2920-2937. doi: 10.1109/taes.2021.3074205. Epub 2021 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验