Suppr超能文献

用于经历日食的立方星的姿态确定系统。

Attitude Determination System for a Cubesat Experiencing Eclipse.

作者信息

Mmopelwa Kesaobaka, Ramodimo Teddy Tumisang, Matsebe Oduetse, Basutli Bokamoso

机构信息

Department of Mechanical, Energy, and Industrial Engineering, Fauculty of Engineering, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana.

Department of Electrical, Computer, and Telecommunications Engineering, Fauculty of Engineering, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana.

出版信息

Sensors (Basel). 2023 Oct 18;23(20):8549. doi: 10.3390/s23208549.

Abstract

In the context of Kalman filters, the predicted error covariance matrix Pk+1 and measurement noise covariance matrix R are used to represent the uncertainty of state variables and measurement noise, respectively. However, in real-world situations, these matrices may vary with time due to measurement faults. To address this issue in CubeSat attitude estimation, an adaptive extended Kalman filter has been proposed that can dynamically estimate the predicted error covariance matrix and measurement noise covariance matrix using an expectation-maximization approach. Simulation experiments have shown that this algorithm outperforms existing methods in terms of attitude estimation accuracy, particularly in sunlit and shadowed phases of the orbit, with the same filtering parameters and initial conditions.

摘要

在卡尔曼滤波器的背景下,预测误差协方差矩阵Pk+1和测量噪声协方差矩阵R分别用于表示状态变量的不确定性和测量噪声。然而,在实际情况中,由于测量故障,这些矩阵可能会随时间变化。为了解决立方星姿态估计中的这个问题,已经提出了一种自适应扩展卡尔曼滤波器,它可以使用期望最大化方法动态估计预测误差协方差矩阵和测量噪声协方差矩阵。仿真实验表明,在相同的滤波参数和初始条件下,该算法在姿态估计精度方面优于现有方法,特别是在轨道的光照和阴影阶段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640a/10611365/88f44fc61ea7/sensors-23-08549-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验