Suppr超能文献

深度学习与传统学习算法在克罗恩病临床预测中的比较:一项概念验证研究。

Deep learning conventional learning algorithms for clinical prediction in Crohn's disease: A proof-of-concept study.

机构信息

Department of Gastroenterology and Hepatology, Eastern Health, Box Hill 3128, Victoria, Australia.

出版信息

World J Gastroenterol. 2021 Oct 14;27(38):6476-6488. doi: 10.3748/wjg.v27.i38.6476.

Abstract

BACKGROUND

Traditional methods of developing predictive models in inflammatory bowel diseases (IBD) rely on using statistical regression approaches to deriving clinical scores such as the Crohn's disease (CD) activity index. However, traditional approaches are unable to take advantage of more complex data structures such as repeated measurements. Deep learning methods have the potential ability to automatically find and learn complex, hidden relationships between predictive markers and outcomes, but their application to clinical prediction in CD and IBD has not been explored previously.

AIM

To determine and compare the utility of deep learning with conventional algorithms in predicting response to anti-tumor necrosis factor (anti-TNF) therapy in CD.

METHODS

This was a retrospective single-center cohort study of all CD patients who commenced anti-TNF therapy (either adalimumab or infliximab) from January 1, 2010 to December 31, 2015. Remission was defined as a C-reactive protein (CRP) < 5 mg/L at 12 mo after anti-TNF commencement. Three supervised learning algorithms were compared: (1) A conventional statistical learning algorithm using multivariable logistic regression on baseline data only; (2) A deep learning algorithm using a feed-forward artificial neural network on baseline data only; and (3) A deep learning algorithm using a recurrent neural network on repeated data. Predictive performance was assessed using area under the receiver operator characteristic curve (AUC) after 10× repeated 5-fold cross-validation.

RESULTS

A total of 146 patients were included (median age 36 years, 48% male). Concomitant therapy at anti-TNF commencement included thiopurines (68%), methotrexate (18%), corticosteroids (44%) and aminosalicylates (33%). After 12 mo, 64% had CRP < 5 mg/L. The conventional learning algorithm selected the following baseline variables for the predictive model: Complex disease behavior, albumin, monocytes, lymphocytes, mean corpuscular hemoglobin concentration and gamma-glutamyl transferase, and had a cross-validated AUC of 0.659, 95% confidence interval (CI): 0.562-0.756. A feed-forward artificial neural network using only baseline data demonstrated an AUC of 0.710 (95%CI: 0.622-0.799; = 0.25 conventional). A recurrent neural network using repeated biomarker measurements demonstrated significantly higher AUC compared to the conventional algorithm (0.754, 95%CI: 0.674-0.834; = 0.036).

CONCLUSION

Deep learning methods are feasible and have the potential for stronger predictive performance compared to conventional model building methods when applied to predicting remission after anti-TNF therapy in CD.

摘要

背景

在炎症性肠病(IBD)中开发预测模型的传统方法依赖于使用统计回归方法来推导临床评分,例如克罗恩病(CD)活动指数。然而,传统方法无法利用更复杂的数据结构,如重复测量。深度学习方法具有自动发现和学习预测标志物与结果之间复杂、隐藏关系的潜力,但尚未探索其在 CD 和 IBD 中的临床预测应用。

目的

确定并比较深度学习与传统算法在预测 CD 患者对肿瘤坏死因子(anti-TNF)治疗反应中的效用。

方法

这是一项回顾性单中心队列研究,纳入了 2010 年 1 月 1 日至 2015 年 12 月 31 日期间开始接受抗 TNF 治疗(阿达木单抗或英夫利昔单抗)的所有 CD 患者。缓解定义为抗 TNF 治疗开始后 12 个月时 C 反应蛋白(CRP)<5mg/L。比较了三种监督学习算法:(1)仅基于基线数据使用多变量逻辑回归的传统统计学习算法;(2)仅基于基线数据使用前馈人工神经网络的深度学习算法;和(3)基于重复数据使用递归神经网络的深度学习算法。通过 10 次重复 5 折交叉验证后的接收器操作特征曲线(AUC)评估预测性能。

结果

共纳入 146 例患者(中位年龄 36 岁,48%为男性)。抗 TNF 治疗开始时的同时治疗包括硫唑嘌呤(68%)、甲氨蝶呤(18%)、皮质类固醇(44%)和氨基水杨酸(33%)。12 个月后,64%的患者 CRP<5mg/L。传统学习算法为预测模型选择了以下基线变量:复杂疾病行为、白蛋白、单核细胞、淋巴细胞、平均红细胞血红蛋白浓度和γ-谷氨酰转移酶,交叉验证 AUC 为 0.659,95%置信区间(CI):0.562-0.756。仅使用基线数据的前馈人工神经网络的 AUC 为 0.710(95%CI:0.622-0.799; = 0.25 传统)。使用重复生物标志物测量的递归神经网络与传统算法相比,具有更高的 AUC(0.754,95%CI:0.674-0.834; = 0.036)。

结论

与传统模型构建方法相比,深度学习方法在应用于预测 CD 患者抗 TNF 治疗后的缓解方面是可行的,并且具有更强的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bdb/8517788/0a35d6c27e6e/WJG-27-6476-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验