Suppr超能文献

基于CT的影像组学列线图预测食管胃交界腺癌中人表皮生长因子受体2状态的价值

The Value of Predicting Human Epidermal Growth Factor Receptor 2 Status in Adenocarcinoma of the Esophagogastric Junction on CT-Based Radiomics Nomogram.

作者信息

Wang Shuxing, Chen Yiqing, Zhang Han, Liang Zhiping, Bu Jun

机构信息

Department of Radiology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangdong, China.

出版信息

Front Oncol. 2021 Oct 14;11:707686. doi: 10.3389/fonc.2021.707686. eCollection 2021.

Abstract

PURPOSE

We developed and validated a CT-based radiomics nomogram to predict status in patients with adenocarcinoma of esophagogastric junction (AEG).

METHOD

A total of 101 patients with -positive (n=46) and -negative (n=55) esophagogastric junction adenocarcinoma (AEG) were retrospectively analyzed. They were then randomly divided into a training cohort (n=70) and a verification cohort (n=31). The radiomics features were obtained from the portal phase of the CT enhanced scan. We used the least absolute shrinkage and selection operator (LASSO) logistic regression method to select the best radiomics features in the training cohort, combined them linearly, and used the radiomics signature formula to calculate the radiomics score (Rad-score) of each AEG patient. A multivariable logistic regression method was applied to develop a prediction model that incorporated the radiomics signature and independent risk predictors. The prediction performance of the nomogram was evaluated using the training and validation cohorts.

RESULT

In the training (P<0.001) and verification groups (P<0.001), the radiomics signature combined with seven radiomics features was significantly correlated with status. The nomogram composed of CT-reported T stage and radiomics signature showed very good predictive performance for status. The area under the curve (AUC) of the training cohort was 0.946 (95% CI: 0.919-0.973), and that of the validation group was 0.903 (95% CI: 0.847-0.959). The calibration curve of the radiomics nomogram showed a good degree of calibration. Decision-curve analysis revealed that the radiomics nomogram was useful.

CONCLUSION

The nomogram CT-based radiomics signature combined with CT-reported T stage can better predict the status of AEG before surgery. It can be used as a non-invasive prediction tool for status and is expected to guide clinical treatment decisions in clinical practice, and it can assist in the formulation of individualized treatment plans.

摘要

目的

我们开发并验证了一种基于CT的放射组学列线图,以预测食管胃交界腺癌(AEG)患者的[具体状态未给出]状态。

方法

回顾性分析了101例食管胃交界腺癌(AEG)患者,其中[具体指标未给出]阳性(n = 46)和[具体指标未给出]阴性(n = 55)。然后将他们随机分为训练队列(n = 70)和验证队列(n = 31)。从CT增强扫描的门静脉期获取放射组学特征。我们使用最小绝对收缩和选择算子(LASSO)逻辑回归方法在训练队列中选择最佳放射组学特征,将它们线性组合,并使用放射组学特征公式计算每个AEG患者的放射组学评分(Rad-score)。应用多变量逻辑回归方法建立一个包含放射组学特征和独立风险预测因子的预测模型。使用训练和验证队列评估列线图的预测性能。

结果

在训练组(P < 0.001)和验证组(P < 0.001)中,结合七个放射组学特征的放射组学特征与[具体状态未给出]状态显著相关。由CT报告的T分期和放射组学特征组成的列线图对[具体状态未给出]状态显示出非常好的预测性能。训练队列的曲线下面积(AUC)为0.946(95% CI:0.919 - 0.973),验证组为0.903(95% CI:0.847 - 0.959)。放射组学列线图的校准曲线显示出良好的校准度。决策曲线分析表明放射组学列线图是有用的。

结论

基于CT的放射组学特征与CT报告的T分期相结合的列线图可以更好地预测AEG术前的[具体状态未给出]状态。它可以作为一种用于[具体状态未给出]状态的非侵入性预测工具,有望在临床实践中指导临床治疗决策,并有助于制定个体化治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71d/8552039/de980ab90fa6/fonc-11-707686-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验