Suppr超能文献

基于深度学习的多模态医学影像图像分割

Deep Learning-based Image Segmentation on Multimodal Medical Imaging.

作者信息

Guo Zhe, Li Xiang, Huang Heng, Guo Ning, Li Quanzheng

机构信息

School of Information and Electronics, Beijing Institute of Technology, China.

Massachusetts General Hospital, USA.

出版信息

IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):162-169. doi: 10.1109/trpms.2018.2890359. Epub 2019 Jan 1.

Abstract

Multi-modality medical imaging techniques have been increasingly applied in clinical practice and research studies. Corresponding multi-modal image analysis and ensemble learning schemes have seen rapid growth and bring unique value to medical applications. Motivated by the recent success of applying deep learning methods to medical image processing, we first propose an algorithmic architecture for supervised multi-modal image analysis with cross-modality fusion at the feature learning level, classifier level, and decision-making level. We then design and implement an image segmentation system based on deep Convolutional Neural Networks (CNN) to contour the lesions of soft tissue sarcomas using multi-modal images, including those from Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Positron Emission Tomography (PET). The network trained with multi-modal images shows superior performance compared to networks trained with single-modal images. For the task of tumor segmentation, performing image fusion within the network (i.e. fusing at convolutional or fully connected layers) is generally better than fusing images at the network output (i.e. voting). This study provides empirical guidance for the design and application of multi-modal image analysis.

摘要

多模态医学成像技术已越来越多地应用于临床实践和研究中。相应的多模态图像分析和集成学习方案发展迅速,并为医学应用带来了独特价值。受近期将深度学习方法应用于医学图像处理取得成功的启发,我们首先提出一种算法架构,用于在特征学习层、分类器层和决策层进行跨模态融合的监督式多模态图像分析。然后,我们设计并实现了一个基于深度卷积神经网络(CNN)的图像分割系统,使用多模态图像(包括来自磁共振成像(MRI)、计算机断层扫描(CT)和正电子发射断层扫描(PET)的图像)勾勒软组织肉瘤的病变轮廓。与使用单模态图像训练的网络相比,使用多模态图像训练的网络表现出更优的性能。对于肿瘤分割任务,在网络内进行图像融合(即在卷积层或全连接层进行融合)通常比在网络输出端进行图像融合(即投票)效果更好。本研究为多模态图像分析的设计和应用提供了实证指导。

相似文献

1
Deep Learning-based Image Segmentation on Multimodal Medical Imaging.基于深度学习的多模态医学影像图像分割
IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):162-169. doi: 10.1109/trpms.2018.2890359. Epub 2019 Jan 1.
6
Self-Supervised Multi-Modal Hybrid Fusion Network for Brain Tumor Segmentation.基于自监督多模态混合融合网络的脑肿瘤分割。
IEEE J Biomed Health Inform. 2022 Nov;26(11):5310-5320. doi: 10.1109/JBHI.2021.3109301. Epub 2022 Nov 10.
7
9
Recurrent feature fusion learning for multi-modality pet-ct tumor segmentation.用于多模态PET-CT肿瘤分割的循环特征融合学习
Comput Methods Programs Biomed. 2021 May;203:106043. doi: 10.1016/j.cmpb.2021.106043. Epub 2021 Mar 11.

引用本文的文献

本文引用的文献

3
Discriminative Localization in CNNs for Weakly-Supervised Segmentation of Pulmonary Nodules.用于肺结节弱监督分割的卷积神经网络中的判别性定位
Med Image Comput Comput Assist Interv. 2017 Sep;10435:568-576. doi: 10.1007/978-3-319-66179-7_65. Epub 2017 Sep 4.
4
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
6
Deep Learning in Medical Image Analysis.医学图像分析中的深度学习
Annu Rev Biomed Eng. 2017 Jun 21;19:221-248. doi: 10.1146/annurev-bioeng-071516-044442. Epub 2017 Mar 9.
7
Brain tumor segmentation with Deep Neural Networks.基于深度神经网络的脑肿瘤分割。
Med Image Anal. 2017 Jan;35:18-31. doi: 10.1016/j.media.2016.05.004. Epub 2016 May 19.
10
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.基于 MRI 图像的卷积神经网络脑肿瘤分割。
IEEE Trans Med Imaging. 2016 May;35(5):1240-1251. doi: 10.1109/TMI.2016.2538465. Epub 2016 Mar 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验