Suppr超能文献

基于 MRI 和合成 CT 图像的脑肿瘤分割深度学习框架。

A Deep Learning Framework for Segmenting Brain Tumors Using MRI and Synthetically Generated CT Images.

机构信息

Department of Surgery (Otolaryngology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia.

出版信息

Sensors (Basel). 2022 Jan 11;22(2):523. doi: 10.3390/s22020523.

Abstract

Multi-modal three-dimensional (3-D) image segmentation is used in many medical applications, such as disease diagnosis, treatment planning, and image-guided surgery. Although multi-modal images provide information that no single image modality alone can provide, integrating such information to be used in segmentation is a challenging task. Numerous methods have been introduced to solve the problem of multi-modal medical image segmentation in recent years. In this paper, we propose a solution for the task of brain tumor segmentation. To this end, we first introduce a method of enhancing an existing magnetic resonance imaging (MRI) dataset by generating synthetic computed tomography (CT) images. Then, we discuss a process of systematic optimization of a convolutional neural network (CNN) architecture that uses this enhanced dataset, in order to customize it for our task. Using publicly available datasets, we show that the proposed method outperforms similar existing methods.

摘要

多模态三维(3-D)图像分割在许多医学应用中都有使用,例如疾病诊断、治疗计划和图像引导手术。尽管多模态图像提供了单模态图像无法提供的信息,但将这些信息整合起来用于分割是一项具有挑战性的任务。近年来,已经提出了许多方法来解决多模态医学图像分割的问题。在本文中,我们提出了一种用于脑肿瘤分割的解决方案。为此,我们首先介绍了一种通过生成合成计算机断层扫描(CT)图像来增强现有磁共振成像(MRI)数据集的方法。然后,我们讨论了一种对卷积神经网络(CNN)架构进行系统优化的过程,该过程使用此增强数据集来针对我们的任务进行定制。使用公开可用的数据集,我们表明,所提出的方法优于类似的现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db41/8780247/7f00c9f2e3ec/sensors-22-00523-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验