Suppr超能文献

用于高通量质谱成像动态稀疏采样的深度学习方法

Deep Learning Approach for Dynamic Sparse Sampling for High-Throughput Mass Spectrometry Imaging.

作者信息

Helminiak David, Hu Hang, Laskin Julia, Ye Dong Hye

机构信息

Electrical and Computer Engineering; Marquette University; Milwaukee, Wisconsin, USA.

Department of Chemistry; Purdue University; West Lafayette, Indiana, USA.

出版信息

IS&T Int Symp Electron Imaging. 2021;2021(Computational Imaging XIX):2901-2907. doi: 10.2352/issn.2470-1173.2021.15.coimg-290. Epub 2021 Jan 18.

Abstract

A Supervised Learning Approach for Dynamic Sampling (SLADS) addresses traditional issues with the incorporation of stochastic processes into a compressed sensing method. Statistical features, extracted from a sample reconstruction, estimate entropy reduction with regression models, in order to dynamically determine optimal sampling locations. This work introduces an enhanced SLADS method, in the form of a Deep Learning Approach for Dynamic Sampling (DLADS), showing reductions in sample acquisition times for high-fidelity reconstructions between ~ 70-80% over traditional rectilinear scanning. These improvements are demonstrated for dimensionally asymmetric, high-resolution molecular images of mouse uterine and kidney tissues, as obtained using Nanospray Desorption ElectroSpray Ionization (nano-DESI) Mass Spectrometry Imaging (MSI). The methodology for training set creation is adjusted to mitigate stretching artifacts generated when using prior SLADS approaches. Transitioning to DLADS removes the need for feature extraction, further advanced with the employment of convolutional layers to leverage inter-pixel spatial relationships. Additionally, DLADS demonstrates effective generalization, despite dissimilar training and testing data. Overall, DLADS is shown to maximize potential experimental throughput for nano-DESI MSI.

摘要

一种用于动态采样的监督学习方法(SLADS)通过将随机过程纳入压缩感知方法来解决传统问题。从样本重建中提取的统计特征,使用回归模型估计熵减少,以便动态确定最佳采样位置。这项工作引入了一种增强的SLADS方法,即深度学习动态采样方法(DLADS),结果表明,与传统的直线扫描相比,高保真重建的样本采集时间减少了约70-80%。使用纳米喷雾解吸电喷雾电离(nano-DESI)质谱成像(MSI)获得的小鼠子宫和肾脏组织的尺寸不对称、高分辨率分子图像证明了这些改进。调整了训练集创建方法,以减轻使用先前SLADS方法时产生的拉伸伪影。向DLADS的转变消除了特征提取的需要,并通过使用卷积层进一步利用像素间空间关系来推进。此外,尽管训练和测试数据不同,DLADS仍表现出有效的泛化能力。总体而言,DLADS被证明可以最大限度地提高nano-DESI MSI的潜在实验通量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b26a/8553253/2099be163afc/nihms-1699290-f0001.jpg

相似文献

1
Deep Learning Approach for Dynamic Sparse Sampling for High-Throughput Mass Spectrometry Imaging.用于高通量质谱成像动态稀疏采样的深度学习方法
IS&T Int Symp Electron Imaging. 2021;2021(Computational Imaging XIX):2901-2907. doi: 10.2352/issn.2470-1173.2021.15.coimg-290. Epub 2021 Jan 18.
3
High-Throughput Mass Spectrometry Imaging with Dynamic Sparse Sampling.基于动态稀疏采样的高通量质谱成像
ACS Meas Sci Au. 2022 Oct 19;2(5):466-474. doi: 10.1021/acsmeasuresciau.2c00031. Epub 2022 Aug 15.

引用本文的文献

8
High-Throughput Mass Spectrometry Imaging with Dynamic Sparse Sampling.基于动态稀疏采样的高通量质谱成像
ACS Meas Sci Au. 2022 Oct 19;2(5):466-474. doi: 10.1021/acsmeasuresciau.2c00031. Epub 2022 Aug 15.

本文引用的文献

2
Dynamic Sparse Sampling for Confocal Raman Microscopy.共聚焦拉曼显微镜的动态稀疏采样。
Anal Chem. 2018 Apr 3;90(7):4461-4469. doi: 10.1021/acs.analchem.7b04749. Epub 2018 Mar 20.
3
Reduced electron exposure for energy-dispersive spectroscopy using dynamic sampling.
Ultramicroscopy. 2018 Jan;184(Pt B):90-97. doi: 10.1016/j.ultramic.2017.10.015. Epub 2017 Oct 23.
4
Dynamic X-ray diffraction sampling for protein crystal positioning.用于蛋白质晶体定位的动态X射线衍射采样
J Synchrotron Radiat. 2017 Jan 1;24(Pt 1):188-195. doi: 10.1107/S160057751601612X.
5
Suppressing Electron Exposure Artifacts: An Electron Scanning Paradigm with Bayesian Machine Learning.
Microsc Microanal. 2016 Aug;22(4):778-88. doi: 10.1017/S1431927616011417. Epub 2016 Jul 26.
6
Variable density compressed image sampling.可变密度压缩图像采样。
IEEE Trans Image Process. 2010 Jan;19(1):264-70. doi: 10.1109/TIP.2009.2032889.
7
Intelligent acquisition and learning of fluorescence microscope data models.荧光显微镜数据模型的智能采集与学习
IEEE Trans Image Process. 2009 Sep;18(9):2071-84. doi: 10.1109/TIP.2009.2024580. Epub 2009 Jun 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验