Helminiak David, Hu Hang, Laskin Julia, Ye Dong Hye
Electrical and Computer Engineering; Marquette University; Milwaukee, Wisconsin, USA.
Department of Chemistry; Purdue University; West Lafayette, Indiana, USA.
IS&T Int Symp Electron Imaging. 2021;2021(Computational Imaging XIX):2901-2907. doi: 10.2352/issn.2470-1173.2021.15.coimg-290. Epub 2021 Jan 18.
A Supervised Learning Approach for Dynamic Sampling (SLADS) addresses traditional issues with the incorporation of stochastic processes into a compressed sensing method. Statistical features, extracted from a sample reconstruction, estimate entropy reduction with regression models, in order to dynamically determine optimal sampling locations. This work introduces an enhanced SLADS method, in the form of a Deep Learning Approach for Dynamic Sampling (DLADS), showing reductions in sample acquisition times for high-fidelity reconstructions between ~ 70-80% over traditional rectilinear scanning. These improvements are demonstrated for dimensionally asymmetric, high-resolution molecular images of mouse uterine and kidney tissues, as obtained using Nanospray Desorption ElectroSpray Ionization (nano-DESI) Mass Spectrometry Imaging (MSI). The methodology for training set creation is adjusted to mitigate stretching artifacts generated when using prior SLADS approaches. Transitioning to DLADS removes the need for feature extraction, further advanced with the employment of convolutional layers to leverage inter-pixel spatial relationships. Additionally, DLADS demonstrates effective generalization, despite dissimilar training and testing data. Overall, DLADS is shown to maximize potential experimental throughput for nano-DESI MSI.
一种用于动态采样的监督学习方法(SLADS)通过将随机过程纳入压缩感知方法来解决传统问题。从样本重建中提取的统计特征,使用回归模型估计熵减少,以便动态确定最佳采样位置。这项工作引入了一种增强的SLADS方法,即深度学习动态采样方法(DLADS),结果表明,与传统的直线扫描相比,高保真重建的样本采集时间减少了约70-80%。使用纳米喷雾解吸电喷雾电离(nano-DESI)质谱成像(MSI)获得的小鼠子宫和肾脏组织的尺寸不对称、高分辨率分子图像证明了这些改进。调整了训练集创建方法,以减轻使用先前SLADS方法时产生的拉伸伪影。向DLADS的转变消除了特征提取的需要,并通过使用卷积层进一步利用像素间空间关系来推进。此外,尽管训练和测试数据不同,DLADS仍表现出有效的泛化能力。总体而言,DLADS被证明可以最大限度地提高nano-DESI MSI的潜在实验通量。