Suppr超能文献

用于蛋白质晶体定位的动态X射线衍射采样

Dynamic X-ray diffraction sampling for protein crystal positioning.

作者信息

Scarborough Nicole M, Godaliyadda G M Dilshan P, Ye Dong Hye, Kissick David J, Zhang Shijie, Newman Justin A, Sheedlo Michael J, Chowdhury Azhad U, Fischetti Robert F, Das Chittaranjan, Buzzard Gregery T, Bouman Charles A, Simpson Garth J

机构信息

Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.

Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.

出版信息

J Synchrotron Radiat. 2017 Jan 1;24(Pt 1):188-195. doi: 10.1107/S160057751601612X.

Abstract

A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.

摘要

本文介绍了一种用于动态采样的稀疏监督学习方法(SLADS),用于基于衍射的蛋白质晶体定位中的剂量减少。晶体定心通常是同步加速器设施中大分子衍射的先决条件,随着X射线衍射映射作为一种定位机制越来越受欢迎。在X射线光栅扫描中,衍射用于根据散射图案中类似布拉格峰的检测来识别晶体位置;然而,这种额外的X射线曝光可能会在数据收集之前对晶体造成可检测到的损伤。动态采样是指根据先前的测量来确定下一个最具信息丰富的位置进行探测以进行图像重建,通过衍射光栅扫描定位期间,动态采样显著降低了蛋白质晶体所承受的X射线剂量。本文实现的SLADS算法专为单像素测量而设计,可以选择新的测量位置。在SLADS的每一步中,该算法选择一个像素,该像素在测量时,根据先前的测量,能使预期的失真减少最大化。对于直径为5 µm的光束,获得了真实的衍射数据,SLADS重建了占总体积31%且仅占晶体内部9%的图像采样,大大减少了晶体上的X射线剂量。使用原位双光子激发荧光显微镜测量作为直径为1 µm光束的衍射成像替代方法,SLADS算法能够从占总体积7%和晶体内部12%的采样中进行图像重建。当在阿贡国家实验室的光束线上实施时,在没有真实图像的情况下,通过对3%的图像采样和大约5%的晶体采样获得了可接受的重建结果。将SLADS纳入X射线衍射采集过程中,有可能通过限制用于图像重建和晶体定位的剂量和曝光面积,显著降低X射线曝光对晶体的影响,这些数据采集硬件存在于大多数大分子晶体学终端站中。

相似文献

1
Dynamic X-ray diffraction sampling for protein crystal positioning.用于蛋白质晶体定位的动态X射线衍射采样
J Synchrotron Radiat. 2017 Jan 1;24(Pt 1):188-195. doi: 10.1107/S160057751601612X.
2
Synchrotron X-Ray Diffraction Dynamic Sampling for Protein Crystal Centering.用于蛋白质晶体定心的同步加速器X射线衍射动态采样
IS&T Int Symp Electron Imaging. 2017;2017:6-9. doi: 10.2352/ISSN.2470-1173.2017.17.COIMG-415. Epub 2017 Jan 29.
4
Towards protein-crystal centering using second-harmonic generation (SHG) microscopy.利用二次谐波产生(SHG)显微镜实现蛋白质晶体的居中。
Acta Crystallogr D Biol Crystallogr. 2013 May;69(Pt 5):843-51. doi: 10.1107/S0907444913002746. Epub 2013 Apr 19.
8
Dynamic Sparse Sampling for Confocal Raman Microscopy.共聚焦拉曼显微镜的动态稀疏采样。
Anal Chem. 2018 Apr 3;90(7):4461-4469. doi: 10.1021/acs.analchem.7b04749. Epub 2018 Mar 20.
9
Serial Synchrotron X-Ray Crystallography (SSX).连续同步辐射X射线晶体学(SSX)
Methods Mol Biol. 2017;1607:239-272. doi: 10.1007/978-1-4939-7000-1_10.

引用本文的文献

3
High-Throughput Mass Spectrometry Imaging with Dynamic Sparse Sampling.基于动态稀疏采样的高通量质谱成像
ACS Meas Sci Au. 2022 Oct 19;2(5):466-474. doi: 10.1021/acsmeasuresciau.2c00031. Epub 2022 Aug 15.
5
Deep Learning Approach for Dynamic Sparse Sampling for High-Throughput Mass Spectrometry Imaging.用于高通量质谱成像动态稀疏采样的深度学习方法
IS&T Int Symp Electron Imaging. 2021;2021(Computational Imaging XIX):2901-2907. doi: 10.2352/issn.2470-1173.2021.15.coimg-290. Epub 2021 Jan 18.
8
Dynamic Sparse Sampling for Confocal Raman Microscopy.共聚焦拉曼显微镜的动态稀疏采样。
Anal Chem. 2018 Apr 3;90(7):4461-4469. doi: 10.1021/acs.analchem.7b04749. Epub 2018 Mar 20.

本文引用的文献

2
Serial femtosecond crystallography: A revolution in structural biology.串行飞秒晶体学:结构生物学的一场革命。
Arch Biochem Biophys. 2016 Jul 15;602:32-47. doi: 10.1016/j.abb.2016.03.036. Epub 2016 Apr 30.
4
Serial femtosecond crystallography: the first five years.连续飞秒晶体学:前五年。
IUCrJ. 2015 Feb 3;2(Pt 2):246-55. doi: 10.1107/S205225251402702X. eCollection 2015 Mar 1.
5
Imaging local electric fields produced upon synchrotron X-ray exposure.同步加速器X射线曝光时产生的局部电场成像。
Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):696-701. doi: 10.1073/pnas.1407771112. Epub 2014 Dec 31.
8
Imaging of protein crystals with two-photon microscopy.用双光子显微镜观察蛋白质晶体。
Biochemistry. 2012 Feb 28;51(8):1625-37. doi: 10.1021/bi201682q. Epub 2012 Feb 16.
9
Two-photon excited UV fluorescence for protein crystal detection.用于蛋白质晶体检测的双光子激发紫外荧光
Acta Crystallogr D Biol Crystallogr. 2011 Oct;67(Pt 10):839-46. doi: 10.1107/S0907444911028253. Epub 2011 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验