Suppr超能文献

国内生产总值预测:机器学习、线性模型还是自回归模型?

GDP Forecasting: Machine Learning, Linear or Autoregression?

作者信息

Maccarrone Giovanni, Morelli Giacomo, Spadaccini Sara

机构信息

Department of Economic and Social Sciences, Sapienza University of Rome, Rome, Italy.

Department of Statistical Sciences, Sapienza University of Rome, Rome, Italy.

出版信息

Front Artif Intell. 2021 Oct 15;4:757864. doi: 10.3389/frai.2021.757864. eCollection 2021.

Abstract

This paper compares the predictive power of different models to forecast the real U.S. GDP. Using quarterly data from 1976 to 2020, we find that the machine learning K-Nearest Neighbour (KNN) model captures the self-predictive ability of the U.S. GDP and performs better than traditional time series analysis. We explore the inclusion of predictors such as the yield curve, its latent factors, and a set of macroeconomic variables in order to increase the level of forecasting accuracy. The predictions result to be improved only when considering long forecast horizons. The use of machine learning algorithm provides additional guidance for data-driven decision making.

摘要

本文比较了不同模型预测美国实际国内生产总值(GDP)的预测能力。利用1976年至2020年的季度数据,我们发现机器学习的K近邻(KNN)模型捕捉到了美国GDP的自我预测能力,并且比传统时间序列分析表现更好。我们探索纳入诸如收益率曲线、其潜在因素以及一组宏观经济变量等预测变量,以提高预测准确性水平。只有在考虑长期预测期限时,预测结果才会得到改善。机器学习算法的使用为数据驱动的决策提供了额外指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f425/8554645/69999e5f5e2b/frai-04-757864-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验