Suppr超能文献

使用生成对抗网络对冈比亚的国内生产总值进行预测。

GDP prediction of The Gambia using generative adversarial networks.

作者信息

Jallow Haruna, Gibba Alieu, Mwangi Ronald Waweru, Imboga Herbert

机构信息

Department of Mathematics (Data Science Option), Pan African University Institute for Basic Sciences, Technology and Innovation, Kiambu, Kenya.

Center for Policy, Research and Strategic Studies (CepRass), Kanifing, Gambia.

出版信息

Front Artif Intell. 2025 Mar 5;8:1546398. doi: 10.3389/frai.2025.1546398. eCollection 2025.

Abstract

Predicting Gross Domestic Product (GDP) is one of the most crucial tasks in analyzing a nation's economy and growth. The primary goal of this study is to forecast GDP using factors such as government spending, inflation, official development aid, remittance inflows, and Foreign Direct Investment (FDI). Additionally, the paper aims to provide an alternative perspective to Generative Adversarial Networks method and demonstrate how such deep learning technique can enhance the accuracy of GDP predictions with small data and economy like The Gambia. We proposed the implementation of Generative Adversarial Networks to predict GDP using various economic factors over the period from 1970 to 2022. Performance metrics, including the coefficient of determination R, mean absolute error (MAE), mean absolute percentage error (MAPE), and root- mean-square error (RMSE) were collected to evaluate the system's accuracy. Among the models tested-Random Forest Regression (RF), XGBoost (XGB), and Support Vector Regression (SVR)-the Generative Adversarial Networks (GAN) model demonstrated superior performance, achieving the highest accuracy, which is 99% prediction accuracies. The most dependable model for capturing intricate correlations between GDP and its affecting components, however, RF and XGBoost, also achieved an accuracy of 98% each. This makes GAN the most desirable model for GDP prediction for our study. Through data analysis, this project aims to provide actionable insights to support strategies that sustain economic boom. This approach enables the generation of accurate GDP forecasts, offering a valuable tool for policymakers and stakeholders.

摘要

预测国内生产总值(GDP)是分析一个国家经济和增长的最重要任务之一。本研究的主要目标是利用政府支出、通货膨胀、官方发展援助、汇款流入和外国直接投资(FDI)等因素来预测GDP。此外,本文旨在为生成对抗网络方法提供另一种视角,并展示这种深度学习技术如何在像冈比亚这样的数据量小的经济体中提高GDP预测的准确性。我们提出实施生成对抗网络,利用1970年至2022年期间的各种经济因素来预测GDP。收集了包括决定系数R、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)在内的性能指标,以评估该系统的准确性。在测试的模型——随机森林回归(RF)、极端梯度提升(XGB)和支持向量回归(SVR)中,生成对抗网络(GAN)模型表现出卓越的性能,实现了最高的准确率,即99%的预测准确率。然而,用于捕捉GDP与其影响因素之间复杂相关性的最可靠模型——RF和XGBoost,也各自达到了98%的准确率。这使得GAN成为我们研究中最理想的GDP预测模型。通过数据分析,该项目旨在提供可操作的见解,以支持维持经济繁荣的战略。这种方法能够生成准确的GDP预测,为政策制定者和利益相关者提供了一个有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/782b/11920123/d88681fd7edf/frai-08-1546398-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验