Wang Tong, Luo Dan, Zhang Yongguang, Zhang Zhen, Wang Jiayi, Cui Guoliang, Wang Xin, Yu Aiping, Chen Zhongwei
School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China.
School of Information and Optoelectronic Science and Engineering & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou 510006, China.
ACS Nano. 2021 Dec 28;15(12):19457-19467. doi: 10.1021/acsnano.1c06213. Epub 2021 Nov 1.
Lithium-sulfur (Li-S) batteries hold great promise for next-generation electronics owing to their high theoretical energy density, low cost, and eco-friendliness. Nevertheless, the practical implementation of Li-S batteries is hindered by the shuttle effect and sluggish reaction kinetics of polysulfides. Herein, the spray drying and chemical etching strategies are implemented to fabricate hierarchically porous MXene microspheres as a multifunctional sulfur electrocatalyst. The interconnected skeleton offers uniform sulfur distribution and prevents the restacking of MXene sheets, while the abundant edges endow the nanosheet-like TiC with rich active sites and regulated a d-band center of Ti atoms, leading to strong lithium polysulfide (LiPS) adsorption. The unsaturated Ti on edge sites can further act as multifunctional sites for chemically anchoring LiPS and lowering Li-ion migration barriers, accelerating LiPS conversion. Owing to these structural advantages, excellent cycling and rate performances of the sulfur cathode can be obtained, even under a raised sulfur loading and lean electrolyte content.
锂硫(Li-S)电池因其高理论能量密度、低成本和环境友好性,在下一代电子产品中具有巨大潜力。然而,多硫化物的穿梭效应和缓慢的反应动力学阻碍了Li-S电池的实际应用。在此,采用喷雾干燥和化学蚀刻策略制备了具有分级多孔结构的MXene微球作为多功能硫电催化剂。相互连接的骨架提供了均匀的硫分布,并防止MXene片层的重新堆叠,而丰富的边缘赋予纳米片状TiC丰富的活性位点,并调节Ti原子的d带中心,从而实现对多硫化锂(LiPS)的强吸附。边缘位点上的不饱和Ti可进一步作为多功能位点,用于化学锚定LiPS并降低锂离子迁移势垒,加速LiPS转化。由于这些结构优势,即使在硫负载量增加和电解液含量较低的情况下,硫正极仍可获得优异的循环性能和倍率性能。