Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
Centre National de la Recherche Scientifique, Illkirch, France.
Elife. 2021 Nov 1;10:e73186. doi: 10.7554/eLife.73186.
The life cycle of microorganisms is associated with dynamic metabolic transitions and complex cellular responses. In yeast, how metabolic signals control the progressive choreography of structural reorganizations observed in quiescent cells during a natural life cycle remains unclear. We have developed an integrated microfluidic device to address this question, enabling continuous single-cell tracking in a batch culture experiencing unperturbed nutrient exhaustion to unravel the coordination between metabolic and structural transitions within cells. Our technique reveals an abrupt fate divergence in the population, whereby a fraction of cells is unable to transition to respiratory metabolism and undergoes a reversible entry into a quiescence-like state leading to premature cell death. Further observations reveal that nonmonotonous internal pH fluctuations in respiration-competent cells orchestrate the successive waves of protein superassemblies formation that accompany the entry into a quiescent state. This ultimately leads to an abrupt cytosolic glass transition that occurs stochastically long after proliferation cessation. This new experimental framework provides a unique way to track single-cell fate dynamics over a long timescale in a population of cells that continuously modify their ecological niche.
微生物的生命周期与动态代谢转变和复杂的细胞反应有关。在酵母中,代谢信号如何控制在自然生命周期中处于静止状态的细胞中观察到的结构重排的渐进式编排仍不清楚。我们开发了一种集成的微流控设备来解决这个问题,该设备能够在经历不受干扰的营养耗尽的批量培养中连续追踪单细胞,以揭示细胞内代谢和结构转变之间的协调。我们的技术揭示了群体中突然的命运分歧,其中一部分细胞无法过渡到呼吸代谢,并经历可逆进入类似静止的状态,导致过早的细胞死亡。进一步的观察表明,呼吸能力细胞中不均匀的内部 pH 波动协调了伴随进入静止状态的蛋白质超组装形成的连续波。这最终导致细胞质玻璃化转变的突然发生,这种转变在增殖停止后很长一段时间内随机发生。这种新的实验框架提供了一种独特的方法,可以在不断改变生态位的细胞群体中长时间追踪单细胞命运动态。