Kocar Thomas D, Müller Hans-Peter, Ludolph Albert C, Kassubek Jan
Department of Neurology, University of Ulm, Ulm, Germany.
Department of Neurology, University of Ulm, Ulm, Germany Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany.
Ther Adv Chronic Dis. 2021 Oct 13;12:20406223211051002. doi: 10.1177/20406223211051002. eCollection 2021.
With the advances in neuroimaging in amyotrophic lateral sclerosis (ALS), it has been speculated that multiparametric magnetic resonance imaging (MRI) is capable to contribute to early diagnosis. Machine learning (ML) can be regarded as the missing piece that allows for the useful integration of multiparametric MRI data into a diagnostic classifier. The major challenges in developing ML classifiers for ALS are limited data quantity and a suboptimal sample to feature ratio which can be addressed by sound feature selection.
We conducted a systematic review to collect MRI biomarkers that could be used as features by searching the online database PubMed for entries in the recent 4 years that contained cross-sectional neuroimaging data of subjects with ALS and an adequate control group. In addition to the qualitative synthesis, a semi-quantitative analysis was conducted for each MRI modality that indicated which brain regions were most commonly reported.
Our search resulted in 151 studies with a total of 221 datasets. In summary, our findings highly resembled generally accepted neuropathological patterns of ALS, with degeneration of the motor cortex and the corticospinal tract, but also in frontal, temporal, and subcortical structures, consistent with the neuropathological four-stage model of the propagation of pTDP-43 in ALS.
These insights are discussed with respect to their potential for MRI feature selection for future ML-based neuroimaging classifiers in ALS. The integration of multiparametric MRI including DTI, volumetric, and texture data using ML may be the best approach to generate a diagnostic neuroimaging tool for ALS.
随着肌萎缩侧索硬化症(ALS)神经影像学的进展,有人推测多参数磁共振成像(MRI)有助于早期诊断。机器学习(ML)可被视为将多参数MRI数据有效整合到诊断分类器中的关键要素。开发用于ALS的ML分类器的主要挑战是数据量有限以及样本与特征比例不理想,而合理的特征选择可以解决这些问题。
我们进行了一项系统综述,通过在在线数据库PubMed中搜索最近4年包含ALS患者横断面神经影像数据及适当对照组的条目,来收集可用作特征的MRI生物标志物。除了定性综合分析外,还对每种MRI模态进行了半定量分析,以表明哪些脑区最常被报道。
我们的搜索得到了151项研究,共221个数据集。总的来说,我们的发现与普遍接受的ALS神经病理学模式高度相似,存在运动皮层和皮质脊髓束的退化,同时额叶、颞叶和皮质下结构也有退化,这与ALS中pTDP - 43传播的神经病理学四阶段模型一致。
我们讨论了这些见解对于未来基于ML的ALS神经影像分类器进行MRI特征选择的潜力。使用ML整合包括扩散张量成像(DTI)、容积和纹理数据在内的多参数MRI可能是生成用于ALS的诊断性神经影像工具的最佳方法。