Kocar Thomas D, Behler Anna, Ludolph Albert C, Müller Hans-Peter, Kassubek Jan
Department of Neurology, University of Ulm, Ulm, Germany.
German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
Front Neurol. 2021 Nov 17;12:745475. doi: 10.3389/fneur.2021.745475. eCollection 2021.
The potential of multiparametric quantitative neuroimaging has been extensively discussed as a diagnostic tool in amyotrophic lateral sclerosis (ALS). In the past, the integration of multimodal, quantitative data into a useful diagnostic classifier was a major challenge. With recent advances in the field, machine learning in a data driven approach is a potential solution: neuroimaging biomarkers in ALS are mainly observed in the cerebral microstructure, with diffusion tensor imaging (DTI) and texture analysis as promising approaches. We set out to combine these neuroimaging markers as age-corrected features in a machine learning model with a cohort of 502 subjects, divided into 404 patients with ALS and 98 healthy controls. We calculated a linear support vector classifier (SVC) which is a very robust model and then verified the results with a multilayer perceptron (MLP)/neural network. Both classifiers were able to separate ALS patients from controls with receiver operating characteristic (ROC) curves showing an area under the curve (AUC) of 0.87-0.88 ("good") for the SVC and 0.88-0.91 ("good" to "excellent") for the MLP. Among the coefficients of the SVC, texture data contributed the most to a correct classification. We consider these results as a proof of concept that demonstrated the power of machine learning in the application of multiparametric quantitative neuroimaging data to ALS.
多参数定量神经成像作为肌萎缩侧索硬化症(ALS)的一种诊断工具,其潜力已得到广泛讨论。过去,将多模态定量数据整合到一个有用的诊断分类器中是一项重大挑战。随着该领域的最新进展,以数据驱动方式进行的机器学习是一种潜在的解决方案:ALS中的神经成像生物标志物主要在脑微结构中观察到,扩散张量成像(DTI)和纹理分析是很有前景的方法。我们着手将这些神经成像标记作为年龄校正特征,纳入一个包含502名受试者的机器学习模型中,这些受试者分为404例ALS患者和98名健康对照。我们计算了一个线性支持向量分类器(SVC),它是一个非常稳健的模型,然后用多层感知器(MLP)/神经网络验证结果。两个分类器都能够将ALS患者与对照区分开,受试者工作特征(ROC)曲线显示,SVC的曲线下面积(AUC)为0.87 - 0.88(“良好”),MLP的曲线下面积为0.88 - 0.91(“良好”至“优秀”)。在SVC的系数中,纹理数据对正确分类的贡献最大。我们认为这些结果是一个概念验证,证明了机器学习在将多参数定量神经成像数据应用于ALS方面的能力。