Suppr超能文献

脑肿瘤的术中DNA甲基化分类影响神经外科手术策略。

Intraoperative DNA methylation classification of brain tumors impacts neurosurgical strategy.

作者信息

Djirackor Luna, Halldorsson Skarphedinn, Niehusmann Pitt, Leske Henning, Capper David, Kuschel Luis P, Pahnke Jens, Due-Tønnessen Bernt J, Langmoen Iver A, Sandberg Cecilie J, Euskirchen Philipp, Vik-Mo Einar O

机构信息

Institute for Surgical Research/Department of Neurosurgery, Vilhelm Magnus Laboratory for Neurosurgical Research, Oslo University Hospital, Oslo, Norway.

Section of Neuropathology, Department of Pathology, Oslo University Hospital, Oslo, Norway.

出版信息

Neurooncol Adv. 2021 Oct 10;3(1):vdab149. doi: 10.1093/noajnl/vdab149. eCollection 2021 Jan-Dec.

Abstract

BACKGROUND

Brain tumor surgery must balance the benefit of maximal resection against the risk of inflicting severe damage. The impact of increased resection is diagnosis-specific. However, the precise diagnosis is typically uncertain at surgery due to limitations of imaging and intraoperative histomorphological methods. Novel and accurate strategies for brain tumor classification are necessary to support personalized intraoperative neurosurgical treatment decisions. Here, we describe a fast and cost-efficient workflow for intraoperative classification of brain tumors based on DNA methylation profiles generated by low coverage nanopore sequencing and machine learning algorithms.

METHODS

We evaluated 6 independent cohorts containing 105 patients, including 50 pediatric and 55 adult patients. Ultra-low coverage whole-genome sequencing was performed on nanopore flow cells. Data were analyzed using copy number variation and ad hoc random forest classifier for the genome-wide methylation-based classification of the tumor.

RESULTS

Concordant classification was obtained between nanopore DNA methylation analysis and a full neuropathological evaluation in 93 of 105 (89%) cases. The analysis demonstrated correct diagnosis in 6/6 cases where frozen section evaluation was inconclusive. Results could be returned to the operating room at a median of 97 min (range 91-161 min). Precise classification of the tumor entity and subtype would have supported modification of the surgical strategy in 12 out of 20 patients evaluated intraoperatively.

CONCLUSION

Intraoperative nanopore sequencing combined with machine learning diagnostics was robust, sensitive, and rapid. This strategy allowed DNA methylation-based classification of the tumor to be returned to the surgeon within a timeframe that supports intraoperative decision making.

摘要

背景

脑肿瘤手术必须在实现最大程度切除的益处与造成严重损伤的风险之间取得平衡。切除范围增加的影响因诊断类型而异。然而,由于成像和术中组织形态学方法的局限性,手术时的精确诊断通常并不确定。需要新颖且准确的脑肿瘤分类策略来支持个性化的术中神经外科治疗决策。在此,我们描述了一种基于低覆盖度纳米孔测序和机器学习算法生成的DNA甲基化谱进行脑肿瘤术中分类的快速且经济高效的工作流程。

方法

我们评估了6个独立队列,共105例患者,其中包括50例儿科患者和55例成年患者。在纳米孔流动槽上进行超低覆盖度全基因组测序。使用拷贝数变异和专门的随机森林分类器对数据进行分析,以基于全基因组甲基化对肿瘤进行分类。

结果

105例病例中有93例(89%)在纳米孔DNA甲基化分析与全面神经病理学评估之间获得了一致的分类结果。该分析在6例冰冻切片评估结果不确定的病例中均做出了正确诊断。结果可在中位数97分钟(范围91 - 161分钟)内返回手术室。在术中评估的20例患者中,有12例肿瘤实体和亚型的精确分类本可支持手术策略的调整。

结论

术中纳米孔测序结合机器学习诊断具有稳健性、敏感性且快速。该策略能够在支持术中决策的时间范围内将基于DNA甲基化的肿瘤分类结果反馈给外科医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/8557693/53368961e2d5/vdab149f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验