Calithera Biosciences, Inc., South San Francisco, CA, United States of America.
PLoS One. 2021 Nov 3;16(11):e0259241. doi: 10.1371/journal.pone.0259241. eCollection 2021.
Dysregulated metabolism is a hallmark of cancer that manifests through alterations in bioenergetic and biosynthetic pathways to enable tumor cell proliferation and survival. Tumor cells exhibit high rates of glycolysis, a phenomenon known as the Warburg effect, and an increase in glutamine consumption to support the tricarboxylic acid (TCA) cycle. Renal cell carcinoma (RCC) tumors express high levels of glutaminase (GLS), the enzyme required for the first step in metabolic conversion of glutamine to glutamate and the entry of glutamine into the TCA cycle. We found that RCC cells are highly dependent on glutamine for proliferation, and this dependence strongly correlated with sensitivity to telaglenstat (CB-839), an investigational, first-in-class, selective, orally bioavailable GLS inhibitor. Metabolic profiling of RCC cell lines treated with telaglenastat revealed a decrease in glutamine consumption, which was concomitant with a decrease in the production of glutamate and other glutamine-derived metabolites, consistent with GLS inhibition. Treatment of RCC cells with signal transduction inhibitors everolimus (mTOR inhibitor) or cabozantinib (VEGFR/MET/AXL inhibitor) in combination with telaglenastat resulted in decreased consumption of both glucose and glutamine and synergistic anti-proliferative effects. Treatment of mice bearing Caki-1 RCC xenograft tumors with cabozantinib plus telaglenastat resulted in reduced tumor growth compared to either agent alone. Enhanced anti-tumor activity was also observed with the combination of everolimus plus telaglenastat. Collectively, our results demonstrate potent, synergistic, anti-tumor activity of telaglenastat plus signal transduction inhibitors cabozantinib or everolimus via a mechanism involving dual inhibition of glucose and glutamine consumption.
代谢失调是癌症的一个标志,它通过改变生物能量和生物合成途径来促进肿瘤细胞的增殖和存活。肿瘤细胞表现出高糖酵解率,即众所周知的瓦博格效应,以及谷氨酰胺消耗的增加,以支持三羧酸(TCA)循环。肾细胞癌(RCC)肿瘤表达高水平的谷氨酰胺酶(GLS),这是代谢转化谷氨酰胺为谷氨酸和谷氨酰胺进入 TCA 循环的第一步所需的酶。我们发现 RCC 细胞对谷氨酰胺的增殖高度依赖,这种依赖性与对telaglenstat(CB-839)的敏感性强烈相关,telaglenstat 是一种研究中的、首创的、选择性的、口服生物可利用的 GLS 抑制剂。用 telaglenastat 处理的 RCC 细胞系的代谢谱分析显示谷氨酰胺消耗减少,同时谷氨酸和其他谷氨酰胺衍生代谢物的产生减少,与 GLS 抑制一致。用信号转导抑制剂 everolimus(mTOR 抑制剂)或 cabozantinib(VEGFR/MET/AXL 抑制剂)联合 telaglenastat 处理 RCC 细胞,导致葡萄糖和谷氨酰胺的消耗减少,并产生协同的抗增殖作用。用 cabozantinib 加 telaglenastat 治疗携带 Caki-1 RCC 异种移植肿瘤的小鼠,与单独使用任一药物相比,肿瘤生长减少。everolimus 加 telaglenastat 的联合治疗也观察到增强的抗肿瘤活性。总之,我们的结果表明,telaglenastat 联合信号转导抑制剂 cabozantinib 或 everolimus 通过双重抑制葡萄糖和谷氨酰胺消耗的机制具有强大的、协同的抗肿瘤活性。