Suppr超能文献

MutScape:一种用于探究癌症基因组学中突变格局的分析工具包。

MutScape: an analytical toolkit for probing the mutational landscape in cancer genomics.

作者信息

Lu Cheng-Hua, Wu Chia-Hsin, Tsai Mong-Hsun, Lai Liang-Chuan, Chuang Eric Y

机构信息

Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan.

Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.

出版信息

NAR Genom Bioinform. 2021 Nov 1;3(4):lqab099. doi: 10.1093/nargab/lqab099. eCollection 2021 Dec.

Abstract

Cancer genomics has been evolving rapidly, fueled by the emergence of numerous studies and public databases through next-generation sequencing technologies. However, the downstream programs used to preprocess and analyze data on somatic mutations are scattered in different tools, most of which require specific input formats. Here, we developed a user-friendly Python toolkit, MutScape, which provides a comprehensive pipeline of filtering, combination, transformation, analysis and visualization for researchers, to easily explore the cohort-based mutational characterization for studying cancer genomics when obtaining somatic mutation data. MutScape not only can preprocess millions of mutation records in a few minutes, but also offers various analyses simultaneously, including driver gene detection, mutational signature, large-scale alteration identification and actionable biomarker annotation. Furthermore, MutScape supports somatic variant data in both variant call format and mutation annotation format, and leverages caller combination strategies to quickly eliminate false positives. With only two simple commands, robust results and publication-quality images are generated automatically. Herein, we demonstrate the ability of MutScape to correctly reproduce known results using breast cancer samples from The Cancer Genome Atlas. More significantly, discovery of novel results in cancer genomic studies is enabled through the advanced features in MutScape. MutScape is freely available on GitHub, at https://github.com/anitalu724/MutScape.

摘要

癌症基因组学一直在迅速发展,众多研究以及通过新一代测序技术建立的公共数据库推动了这一进程。然而,用于预处理和分析体细胞突变数据的下游程序分散在不同工具中,其中大多数需要特定的输入格式。在此,我们开发了一个用户友好的Python工具包MutScape,它为研究人员提供了一个全面的流程,包括过滤、组合、转换、分析和可视化,以便在获取体细胞突变数据时轻松探索基于队列的突变特征,用于研究癌症基因组学。MutScape不仅能在几分钟内预处理数百万条突变记录,还能同时提供各种分析,包括驱动基因检测、突变特征分析、大规模改变识别和可操作生物标志物注释。此外,MutScape支持变异调用格式和突变注释格式的体细胞变异数据,并利用调用者组合策略快速消除假阳性。只需两个简单命令,就能自动生成可靠的结果和可用于发表的图像。在此,我们展示了MutScape使用来自癌症基因组图谱(The Cancer Genome Atlas)的乳腺癌样本正确重现已知结果的能力。更重要的是,MutScape的先进功能能够在癌症基因组研究中发现新的结果。MutScape可在GitHub上免费获取,网址为https://github.com/anitalu724/MutScape。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5772/8559159/434797ebe535/lqab099fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验