Cheatle Jarvela Alys M, Trelstad Catherine S, Pick Leslie
Department of Entomology, University of Maryland, College Park, MD, USA.
J Exp Zool B Mol Dev Evol. 2023 Mar;340(2):116-130. doi: 10.1002/jez.b.23102. Epub 2021 Nov 3.
The gene regulatory network for segmentation in arthropods offers valuable insights into how networks evolve owing to the breadth of species examined and the extremely detailed knowledge gained in the model organism Drosophila melanogaster. These studies have shown that Drosophila's network represents a derived state that acquired changes to accelerate segment patterning, whereas most insects specify segments gradually as the embryo elongates. Such heterochronic shifts in segmentation have potentially emerged multiple times within holometabolous insects, resulting in many mechanistic variants and difficulties in isolating underlying commonalities that permit such shifts. Recent studies identified regulatory genes that work as timing factors, coordinating gene expression transitions during segmentation. These studies predict that changes in timing factor deployment explain shifts in segment patterning relative to other developmental events. Here, we test this hypothesis by characterizing the temporal and spatial expression of the pair-rule patterning genes in the malaria vector mosquito, Anopheles stephensi. This insect is a Dipteran (fly), like Drosophila, but represents an ancient divergence within this clade, offering a useful counterpart for evo-devo studies. In mosquito embryos, we observe anterior to posterior sequential addition of stripes for many pair-rule genes and a wave of broad timer gene expression across this axis. Segment polarity gene stripes are added sequentially in the wake of the timer gene wave and the full pattern is not complete until the embryo is fully elongated. This "progressive segmentation" mode in Anopheles displays commonalities with both Drosophila's rapid segmentation mechanism and sequential modes used by more distantly related insects.
由于所研究物种的广泛性以及在模式生物黑腹果蝇中获得的极其详细的知识,节肢动物体节形成的基因调控网络为理解网络如何进化提供了有价值的见解。这些研究表明,果蝇的网络代表了一种衍生状态,它发生了变化以加速体节模式形成,而大多数昆虫是随着胚胎伸长逐渐确定体节的。这种体节形成的异时性转变可能在全变态昆虫中多次出现,导致了许多机制变体,并且难以分离出允许这种转变的潜在共性。最近的研究确定了作为时间因子起作用的调控基因,它们在体节形成过程中协调基因表达的转变。这些研究预测,时间因子部署的变化解释了相对于其他发育事件的体节模式转变。在这里,我们通过表征疟蚊媒介斯氏按蚊中配对规则模式形成基因的时空表达来检验这一假设。这种昆虫是双翅目(蝇类),与果蝇一样,但代表了该类群中的一个古老分支,为进化发育研究提供了一个有用的对照。在蚊子胚胎中,我们观察到许多配对规则基因的条纹从前向后依次添加,并且在这个轴上有一波广泛的定时器基因表达。体节极性基因条纹在定时器基因波之后依次添加,直到胚胎完全伸长,完整的模式才完成。斯氏按蚊的这种“渐进性体节形成”模式与果蝇的快速体节形成机制以及关系更远的昆虫所使用的顺序模式都有共同之处。