State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Plant Cell. 2022 Jan 20;34(1):579-596. doi: 10.1093/plcell/koab266.
The self-incompatibility (SI) system with the broadest taxonomic distribution in angiosperms is based on multiple S-locus F-box genes (SLFs) tightly linked to an S-RNase termed type-1. Multiple SLFs collaborate to detoxify nonself S-RNases while being unable to detoxify self S-RNases. However, it is unclear how such a system evolved, because in an ancestral system with a single SLF, many nonself S-RNases would not be detoxified, giving low cross-fertilization rates. In addition, how the system has been maintained in the face of whole-genome duplications (WGDs) or lost in other lineages remains unclear. Here we show that SLFs from a broad range of species can detoxify S-RNases from Petunia with a high detoxification probability, suggestive of an ancestral feature enabling cross-fertilization and subsequently modified as additional SLFs evolved. We further show, based on its genomic signatures, that type-1 was likely maintained in many lineages, despite WGD, through deletion of duplicate S-loci. In other lineages, SI was lost either through S-locus deletions or by retaining duplications. Two deletion lineages regained SI through type-2 (Brassicaceae) or type-4 (Primulaceae), and one duplication lineage through type-3 (Papaveraceae) mechanisms. Thus, our results reveal a highly dynamic process behind the origin, maintenance, loss, and regain of SI.
被子植物中分布最广泛的自交不亲和 (SI) 系统基于多个紧密连接到称为 1 型的 S-RNase 的 S 基因座 F -box 基因 (SLFs)。多个 SLFs 协同作用来解毒非自身 S-RNases,而不能解毒自身 S-RNases。然而,目前尚不清楚这种系统是如何进化的,因为在具有单个 SLF 的祖先系统中,许多非自身 S-RNases不会被解毒,从而导致受精率较低。此外,该系统如何在面对全基因组加倍 (WGD) 时得以维持或在其他谱系中丢失尚不清楚。在这里,我们表明来自广泛物种的 SLFs 可以以高解毒概率解毒 Petunia 的 S-RNases,这表明存在一种使异交受精成为可能的祖先特征,随后随着额外 SLFs 的进化而发生改变。我们进一步基于其基因组特征表明,尽管发生了 WGD,但 1 型仍可能通过删除重复的 S 座而在许多谱系中得以维持。在其他谱系中,SI 通过 S 座缺失或保留重复而丢失。两个缺失谱系通过 2 型 (Brassicaceae) 或 4 型 (Primulaceae) 以及一个通过 3 型 (Papaveraceae) 机制重新获得 SI。因此,我们的结果揭示了 SI 的起源、维持、丢失和恢复背后的一个高度动态过程。