Suppr超能文献

采用两步视觉变换器方法从苏木精-伊红(H&E)染色切片预测非小细胞肺癌中的ROS1和ALK融合。

Predicting ROS1 and ALK fusions in NSCLC from H&E slides with a two-step vision transformer approach.

作者信息

Amidi Eghbal, Ramzanpour Mohammadreza, Chen Ming, Boucher Tommy, Varma Mukund, Samec Timothy, Lamon Brian, Stransky Nicolas, Miglarese Mark R, Oberley Matthew, Spetzler David, Sledge George W

机构信息

Caris Life Sciences, Phoenix, AZ, USA.

出版信息

NPJ Precis Oncol. 2025 Jul 30;9(1):266. doi: 10.1038/s41698-025-01037-x.

Abstract

Non-small cell lung cancer (NSCLC) is one of the deadliest and most prevalent cancers worldwide, with 5-year survival rates of ~28%. The molecular heterogeneity within NSCLC encompasses several types of genetic alterations, such as mutations, amplifications, and rearrangements, and can drive aggressive tumor behavior and poor response to therapy. Among these genetic alterations are ALK and ROS1 fusions. Though these fusion events are relatively rare, their identification is crucial for selecting effective targeted treatments and avoiding therapies with significant side-effects. Fluorescent in situ hybridization (FISH), immunohistochemistry (IHC), and sequencing of DNA and RNA are standard methods to detect ALK and ROS1 fusions, but they are costly, time-consuming, and require adequate tumor tissue. Here we employ deep learning models using whole slide images (WSIs) of hematoxylin and eosin (H&E)-stained formalin-fixed paraffin embedded (FFPE) NSCLC tumor specimens to identify tumors most likely to harbor ALK and ROS1 fusions in a cohort of 33,014 patients, out of which 306 and 697 patients are positive for ROS1 or ALK fusions, respectively. A vision transformer model (MoCo-V3) was trained as a feature extractor, followed by training transformer-based models to predict the presence of ROS1 and ALK fusions. Due to the limited positive sample size for ROS1, a two-step specialized training procedure was implemented to enhance prediction performance during cross-validation. Our approach achieved receiver-operating characteristic areas under the curves (ROC AUCs) of 0.85 for ROS1 and 0.84 for ALK on a holdout dataset, demonstrating the effectiveness of this method. This framework holds significant potential for clinical application by offering a scalable, accurate, and cost-efficient method for detecting ALK and ROS1 fusions. Furthermore, it may serve as a pre-screening tool to identify candidates for confirmatory diagnostic testing and clinical trials, ultimately improving the efficiency of selecting appropriately targeted therapies for NSCLC patients.

摘要

非小细胞肺癌(NSCLC)是全球最致命且最常见的癌症之一,其5年生存率约为28%。NSCLC内的分子异质性包括多种类型的基因改变,如突变、扩增和重排,可导致肿瘤侵袭性生长及对治疗反应不佳。这些基因改变中包括ALK和ROS1融合。尽管这些融合事件相对罕见,但对其进行识别对于选择有效的靶向治疗及避免使用有严重副作用的疗法至关重要。荧光原位杂交(FISH)、免疫组织化学(IHC)以及DNA和RNA测序是检测ALK和ROS1融合的标准方法,但它们成本高、耗时且需要足够的肿瘤组织。在此,我们利用苏木精和伊红(H&E)染色的福尔马林固定石蜡包埋(FFPE)NSCLC肿瘤标本的全玻片图像(WSIs),运用深度学习模型,在33014例患者队列中识别最有可能存在ALK和ROS1融合的肿瘤,其中分别有306例和697例患者的ROS1或ALK融合呈阳性。训练了一个视觉Transformer模型(MoCo-V3)作为特征提取器,随后训练基于Transformer的模型来预测ROS1和ALK融合的存在情况。由于ROS1阳性样本量有限,实施了两步专门训练程序以在交叉验证期间提高预测性能。在一个验证数据集上,我们的方法对于ROS1的受试者操作特征曲线下面积(ROC AUC)达到0.85,对于ALK为0.84,证明了该方法的有效性。该框架通过提供一种可扩展、准确且经济高效的检测ALK和ROS1融合的方法,具有巨大的临床应用潜力。此外,它可作为一种预筛选工具,识别用于确诊诊断测试和临床试验的候选者,最终提高为NSCLC患者选择合适靶向治疗的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f7/12311174/7ab486fdc108/41698_2025_1037_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验