Suppr超能文献

注意力去稀疏化很重要:在数字病理学表示学习中引入多样性。

Attention De-sparsification Matters: Inducing diversity in digital pathology representation learning.

作者信息

Kapse Saarthak, Das Srijan, Zhang Jingwei, Gupta Rajarsi R, Saltz Joel, Samaras Dimitris, Prasanna Prateek

机构信息

Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA.

UNC Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA.

出版信息

Med Image Anal. 2024 Apr;93:103070. doi: 10.1016/j.media.2023.103070. Epub 2023 Dec 28.

Abstract

We propose DiRL, a Diversity-inducing Representation Learning technique for histopathology imaging. Self-supervised learning (SSL) techniques, such as contrastive and non-contrastive approaches, have been shown to learn rich and effective representations of digitized tissue samples with limited pathologist supervision. Our analysis of vanilla SSL-pretrained models' attention distribution reveals an insightful observation: sparsity in attention, i.e, models tends to localize most of their attention to some prominent patterns in the image. Although attention sparsity can be beneficial in natural images due to these prominent patterns being the object of interest itself, this can be sub-optimal in digital pathology; this is because, unlike natural images, digital pathology scans are not object-centric, but rather a complex phenotype of various spatially intermixed biological components. Inadequate diversification of attention in these complex images could result in crucial information loss. To address this, we leverage cell segmentation to densely extract multiple histopathology-specific representations, and then propose a prior-guided dense pretext task, designed to match the multiple corresponding representations between the views. Through this, the model learns to attend to various components more closely and evenly, thus inducing adequate diversification in attention for capturing context-rich representations. Through quantitative and qualitative analysis on multiple tasks across cancer types, we demonstrate the efficacy of our method and observe that the attention is more globally distributed.

摘要

我们提出了DiRL,一种用于组织病理学成像的诱导多样性表示学习技术。自监督学习(SSL)技术,如对比和非对比方法,已被证明在有限的病理学家监督下能够学习数字化组织样本的丰富有效表示。我们对基于香草SSL预训练模型的注意力分布分析揭示了一个有见地的观察结果:注意力稀疏,即模型倾向于将大部分注意力集中在图像中的一些突出模式上。虽然由于这些突出模式本身就是感兴趣的对象,注意力稀疏在自然图像中可能是有益的,但在数字病理学中这可能不是最优的;这是因为,与自然图像不同,数字病理扫描不是以对象为中心的,而是各种空间混合的生物成分的复杂表型。在这些复杂图像中注意力缺乏足够的多样性可能会导致关键信息丢失。为了解决这个问题,我们利用细胞分割来密集提取多个组织病理学特定表示,然后提出一个先验引导的密集预训练任务,旨在匹配视图之间的多个相应表示。通过这种方式,模型学会更紧密、更均匀地关注各种成分,从而在注意力方面诱导足够的多样性,以捕获富含上下文的表示。通过对多种癌症类型的多个任务进行定量和定性分析,我们证明了我们方法的有效性,并观察到注意力分布更加全局化。

相似文献

引用本文的文献

1
Hard Negative Sample Mining for Whole Slide Image Classification.用于全切片图像分类的难负样本挖掘
Med Image Comput Comput Assist Interv. 2024 Oct;15004:144-154. doi: 10.1007/978-3-031-72083-3_14. Epub 2024 Oct 14.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验