Department of Life Sciences, Imperial College London, London, UK.
Department of Chemical Engineering, Imperial College London, London, UK.
Appl Spectrosc. 2023 Dec;77(12):1393-1400. doi: 10.1177/00037028231210293. Epub 2023 Nov 1.
Protein A affinity chromatography is a key step in isolation of biotherapeutics (BTs) containing fragment crystallizable regions, including monoclonal and bispecific antibodies. Dynamic binding capacity (DBC) analysis assesses how much BT will bind to a protein A column. DBC reduces with column usage, effectively reducing the amount of recovered product over time. Drug regulatory bodies mandate chromatography resin lifetime for BT isolation, through measurement of parameters including DBC, so this feature is carefully monitored in industrial purification pipelines. High-performance affinity chromatography (HPAC) is typically used to assess the concentration of BT, which when loaded to the column results in significant breakthrough of BT in the flowthrough. HPAC gives an accurate assessment of DBC and how this changes over time but only reports on protein concentration, requires calibration for each new BT analyzed, and can only be used offline. Here we utilized Raman spectroscopy and revealed that this approach is at least as effective as both HPAC and ultraviolet chromatogram methods at monitoring DBC of protein A resins. In addition to reporting on protein concentration, the chemical information in the Raman spectra provides information on aggregation status and protein structure, providing extra quality controls to industrial bioprocessing pipelines. In combination with partial least square (PLS) analysis, Raman spectroscopy can be used to determine the DBC of a BT without prior calibration. Here we performed Raman analysis offline in a 96-well plate format, however, it is feasible to perform this inline. This study demonstrates the power of Raman spectroscopy as a significantly improved approach to DBC monitoring in industrial pipelines.
蛋白 A 亲和层析是分离包含片段可结晶区的生物治疗药物(BTs)的关键步骤,包括单克隆抗体和双特异性抗体。动态结合容量(DBC)分析评估 BT 与蛋白 A 柱的结合量。随着柱的使用,DBC 会降低,从而导致随着时间的推移回收产品的量减少。药物监管机构通过测量 DBC 等参数,对 BT 分离用的色谱树脂寿命进行了规定,因此在工业纯化管道中会仔细监测这一特性。高性能亲和层析(HPAC)通常用于评估 BT 的浓度,当 BT 加载到柱上时,会导致 BT 在流穿物中出现明显的突破。HPAC 可以准确评估 DBC 及其随时间的变化情况,但仅报告蛋白质浓度,需要对每个新分析的 BT 进行校准,并且只能离线使用。在这里,我们利用拉曼光谱法发现,与 HPAC 和紫外色谱法相比,这种方法至少在监测蛋白 A 树脂的 DBC 方面同样有效。除了报告蛋白质浓度外,拉曼光谱中的化学信息还提供了关于聚集状态和蛋白质结构的信息,为工业生物加工管道提供了额外的质量控制。结合偏最小二乘法(PLS)分析,拉曼光谱可以在没有预先校准的情况下用于确定 BT 的 DBC。在这里,我们在 96 孔板格式中离线进行拉曼分析,但在线进行也可行。本研究证明了拉曼光谱作为一种在工业管道中进行 DBC 监测的显著改进方法的强大功能。