Suppr超能文献

使用拉曼光谱和机器学习对细胞培养特征进行全面建模。

Comprehensive modeling of cell culture profile using Raman spectroscopy and machine learning.

机构信息

Biologics Technology Research Laboratories I, Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-Machi, Oura-Gun, Gunma, 370-0503, Japan.

Analytical & Quality Evaluation Research Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 1-12-1, Shinomiya, Hiratsuka, Kanagawa, 254-0014, Japan.

出版信息

Sci Rep. 2023 Dec 9;13(1):21805. doi: 10.1038/s41598-023-49257-0.

Abstract

Chinese hamster ovary (CHO) cells are widely utilized in the production of antibody drugs. To ensure the production of large quantities of antibodies that meet the required specifications, it is crucial to monitor and control the levels of metabolites comprehensively during CHO cell culture. In recent years, continuous analysis methods employing on-line/in-line techniques using Raman spectroscopy have attracted attention. While these analytical methods can nondestructively monitor culture data, constructing a highly accurate measurement model for numerous components is time-consuming, making it challenging to implement in the rapid research and development of pharmaceutical manufacturing processes. In this study, we developed a comprehensive, simple, and automated method for constructing a Raman model of various components measured by LC-MS and other techniques using machine learning with Python. Preprocessing and spectral-range optimization of data for model construction (partial least square (PLS) regression) were automated and accelerated using Bayes optimization. Subsequently, models were constructed for each component using various model construction techniques, including linear regression, ridge regression, XGBoost, and neural network. This enabled the model accuracy to be improved compared with PLS regression. This automated approach allows continuous monitoring of various parameters for over 100 components, facilitating process optimization and process monitoring of CHO cells.

摘要

中国仓鼠卵巢(CHO)细胞广泛应用于抗体药物的生产。为了确保生产出大量符合规格要求的抗体,在 CHO 细胞培养过程中全面监测和控制代谢物的水平至关重要。近年来,采用拉曼光谱的在线/在线技术的连续分析方法引起了人们的关注。虽然这些分析方法可以非破坏性地监测培养数据,但构建用于众多成分的高精度测量模型耗时耗力,在制药生产工艺的快速研发中难以实施。在这项研究中,我们使用 Python 中的机器学习开发了一种全面、简单和自动化的方法,用于构建通过 LC-MS 和其他技术测量的各种成分的拉曼模型。使用贝叶斯优化对模型构建(偏最小二乘(PLS)回归)的数据进行预处理和光谱范围优化实现了自动化和加速。随后,使用各种模型构建技术(包括线性回归、岭回归、XGBoost 和神经网络)为每个成分构建模型,这使得模型准确性与 PLS 回归相比得到了提高。这种自动化方法可以连续监测超过 100 个参数,有助于 CHO 细胞的工艺优化和过程监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1b8/10710501/cd1ce61da33a/41598_2023_49257_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验