Suppr超能文献

应用新型电子健康记录预测子痫前期:机器学习算法。

Novelelectronic health records applied for prediction of pre-eclampsia: Machine-learning algorithms.

机构信息

Department of Obstetrics and Gynecology, Xinhua Hospital Chongming Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Department of Scientific Research Centre, Xinhua Hospital Chongming Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Pregnancy Hypertens. 2021 Dec;26:102-109. doi: 10.1016/j.preghy.2021.10.006. Epub 2021 Oct 28.

Abstract

OBJECTIVE

To predict risk of pre-eclampsia (PE) in women using machine learning (ML) algorithms, based on electronic health records (EHR) collected at the early second trimester.

STUDY DESIGN

A total of 3759 cases of pregnancy who received antenatal care at Xinhua hospital Chongming branch Affiliated to Shanghai Jiaotong University were included in this retrospective EHR-based study. Thirty-eight candidate clinical parameters routinely available at the first visit in antenatal care were collected by manual chart review. Logistic regression (LR), random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGBoost) were used to construct the prediction model. Features that contributed to the model predictions were identified using XGBoost.

OUTCOME MEASURES

The performance of ML models to predict women at risk of PE was quantified in terms of accuracy, precision, recall, false negative score, f1_score, brier score and the area under the receiver operating curve (auROC).

RESULTS

The XGboost model had the best prediction performance (accuracy = 0.920, precision = 0.447, recall = 0.789, f1_score = 0.571, auROC = 0.955). The most predictive feature of PE development was fasting plasma glucose, followed by mean blood pressure and body mass index. An easy-to-use model that a patient could answer independently still enabled accurate prediction, with auROC of 0.83.

CONCLUSION

risk of PE development can be predicted with excellent discriminative ability using ML algorithms based on EHR collected at the early second trimester. Future studies are needed to assess the real-world clinical utility of the model.

摘要

目的

基于电子健康记录(EHR),利用机器学习(ML)算法预测妊娠中期早期子痫前期(PE)的发病风险。

研究设计

本回顾性 EHR 研究共纳入 3759 例在上海交通大学新华医院崇明分院接受产前保健的妊娠妇女。通过手工图表回顾收集了产前保健首次就诊时常规可用的 38 个候选临床参数。采用逻辑回归(LR)、随机森林(RF)、支持向量机(SVM)和极端梯度提升(XGBoost)构建预测模型。采用 XGBoost 识别有助于模型预测的特征。

结果

ML 模型预测子痫前期发病风险的性能以准确性、精确度、召回率、假阴性评分、f1 评分、Brier 评分和受试者工作特征曲线下面积(auROC)来衡量。

XGBoost 模型具有最佳的预测性能(准确性=0.920,精确度=0.447,召回率=0.789,f1 评分=0.571,auROC=0.955)。PE 发展最具预测性的特征是空腹血糖,其次是平均血压和体重指数。一个患者可以独立回答的简单易用的模型仍然可以实现准确预测,auROC 为 0.83。

结论

基于妊娠中期早期收集的 EHR,利用 ML 算法可以很好地区分子痫前期的发病风险。需要进一步的研究来评估该模型的实际临床应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验