Suppr超能文献

基于机器学习方法的子痫前期预测模型的开发:一项在中国进行的回顾性队列研究。

Development of a prediction model on preeclampsia using machine learning-based method: a retrospective cohort study in China.

作者信息

Liu Mengyuan, Yang Xiaofeng, Chen Guolu, Ding Yuzhen, Shi Meiting, Sun Lu, Huang Zhengrui, Liu Jia, Liu Tong, Yan Ruiling, Li Ruiman

机构信息

The First Affiliated Hospital of Jinan University, Guangzhou, China.

School of Information and Communication Engineering, Harbin Engineering University, Harbin, China.

出版信息

Front Physiol. 2022 Aug 12;13:896969. doi: 10.3389/fphys.2022.896969. eCollection 2022.

Abstract

The aim of this study was to use machine learning methods to analyze all available clinical and laboratory data obtained during prenatal screening in early pregnancy to develop predictive models in preeclampsia (PE). Data were collected by retrospective medical records review. This study used 5 machine learning algorithms to predict the PE: deep neural network (DNN), logistic regression (LR), support vector machine (SVM), decision tree (DT), and random forest (RF). Our model incorporated 18 variables including maternal characteristics, medical history, prenatal laboratory results, and ultrasound results. The area under the receiver operating curve (AUROC), calibration and discrimination were evaluated by cross-validation. Compared with other prediction algorithms, the RF model showed the highest accuracy rate. The AUROC of RF model was 0.86 (95% CI 0.80-0.92), the accuracy was 0.74 (95% CI 0.74-0.75), the precision was 0.82 (95% CI 0.79-0.84), the recall rate was 0.42 (95% CI 0.41-0.44), and Brier score was 0.17 (95% CI 0.17-0.17). The machine learning method in our study automatically identified a set of important predictive features, and produced high predictive performance on the risk of PE from the early pregnancy information.

摘要

本研究的目的是使用机器学习方法分析早孕期产前筛查期间获得的所有可用临床和实验室数据,以建立子痫前期(PE)的预测模型。通过回顾性病历审查收集数据。本研究使用5种机器学习算法来预测PE:深度神经网络(DNN)、逻辑回归(LR)、支持向量机(SVM)、决策树(DT)和随机森林(RF)。我们的模型纳入了18个变量,包括产妇特征、病史、产前实验室检查结果和超声检查结果。通过交叉验证评估受试者工作特征曲线下面积(AUROC)、校准和鉴别能力。与其他预测算法相比,RF模型显示出最高的准确率。RF模型的AUROC为0.86(95%CI 0.80-0.92),准确率为0.74(95%CI 0.74-0.75),精确率为0.82(95%CI 0.79-0.84),召回率为0.42(95%CI 0.41-0.44),Brier评分为0.17(95%CI 0.17-0.17)。我们研究中的机器学习方法自动识别出一组重要的预测特征,并根据早孕期信息对子痫前期风险产生了较高的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b0a/9413067/ac5fdd00550f/fphys-13-896969-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验