Suppr超能文献

使用 SECRiFY 大规模平行检测蛋白质片段分泌能力揭示影响分泌系统转运的特征。

Massively parallel interrogation of protein fragment secretability using SECRiFY reveals features influencing secretory system transit.

机构信息

Center for Medical Biotechnology, VIB, Zwijnaarde, Belgium.

Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium.

出版信息

Nat Commun. 2021 Nov 5;12(1):6414. doi: 10.1038/s41467-021-26720-y.

Abstract

While transcriptome- and proteome-wide technologies to assess processes in protein biogenesis are now widely available, we still lack global approaches to assay post-ribosomal biogenesis events, in particular those occurring in the eukaryotic secretory system. We here develop a method, SECRiFY, to simultaneously assess the secretability of >10 protein fragments by two yeast species, S. cerevisiae and P. pastoris, using custom fragment libraries, surface display and a sequencing-based readout. Screening human proteome fragments with a median size of 50-100 amino acids, we generate datasets that enable datamining into protein features underlying secretability, revealing a striking role for intrinsic disorder and chain flexibility. The SECRiFY methodology generates sufficient amounts of annotated data for advanced machine learning methods to deduce secretability patterns. The finding that secretability is indeed a learnable feature of protein sequences provides a solid base for application-focused studies.

摘要

虽然现在有广泛可用的转录组和蛋白质组技术来评估蛋白质生物发生过程,但我们仍然缺乏全局方法来检测核糖体后生物发生事件,特别是那些发生在真核分泌系统中的事件。我们在这里开发了一种方法 SECRiFY,该方法使用定制的片段文库、表面展示和基于测序的读出,同时评估两种酵母(酿酒酵母和巴斯德毕赤酵母)中 >10 个蛋白质片段的分泌能力。我们用平均大小为 50-100 个氨基酸的人类蛋白质组片段进行筛选,生成了数据集,可用于挖掘蛋白质分泌能力的潜在特征,揭示了内在无序性和链柔性的惊人作用。SECRiFY 方法生成了足够数量的注释数据,可用于先进的机器学习方法来推断分泌能力模式。分泌能力确实是蛋白质序列的可学习特征的发现为应用为导向的研究提供了坚实的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7b0/8571348/7bb33d4b3abf/41467_2021_26720_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验