Suppr超能文献

英国东米德兰兹地区新冠病毒病病例异常空间聚集特征因素的探索:对救护车999数据的地理空间分析

An exploration of factors characterising unusual spatial clusters of COVID-19 cases in the East Midlands region, UK: A geospatial analysis of ambulance 999 data.

作者信息

Moore Harriet Elizabeth, Hill Bartholomew, Siriwardena Niro, Law Graham, Thomas Chris, Gussy Mark, Spaight Robert, Tanser Frank

机构信息

DIRE Research Group Lead, UK.

EDGE Consortium Affiliates, UK.

出版信息

Landsc Urban Plan. 2022 Mar;219:104299. doi: 10.1016/j.landurbplan.2021.104299. Epub 2021 Oct 30.

Abstract

Complex interactions between physical landscapes and social factors increase vulnerability to emerging infections and their sequelae. Relative vulnerability to severe illness and/or death (VSID) depends on risk and extent of exposure to a virus and underlying health susceptibility. Identifying vulnerable communities and the regions they inhabit in real time is essential for effective rapid response to a new pandemic, such as COVID-19. In the period between first confirmed cases and the introduction of widespread community testing, ambulance records of suspected severe illness from COVID-19 could be used to identify vulnerable communities and regions and rapidly appraise factors that may explain VSID. We analyse the spatial distribution of more than 10,000 suspected severe COVID-19 cases using records of provisional diagnoses made by trained paramedics attending medical emergencies. We identify 13 clusters of severe illness likely related to COVID-19 occurring in the East Midlands of the UK and present an in-depth analysis of those clusters, including urban and rural dynamics, the physical characteristics of landscapes, and socio-economic conditions. Our findings suggest that the dynamics of VSID vary depending on wider geographic location. Vulnerable communities and regions occur in more deprived urban centres as well as more affluent -urban and rural areas. This methodology could contribute to the development of a rapid national response to support vulnerable communities during emerging pandemics in real time to save lives.

摘要

自然景观与社会因素之间的复杂相互作用增加了人们对新出现感染及其后遗症的易感性。对严重疾病和/或死亡的相对易感性(VSID)取决于接触病毒的风险和程度以及潜在的健康易感性。实时识别脆弱社区及其所在地区对于有效快速应对新的大流行(如COVID-19)至关重要。在首例确诊病例出现到广泛开展社区检测之间的这段时间里,COVID-19疑似重症病例的救护车记录可用于识别脆弱社区和地区,并快速评估可能解释VSID的因素。我们利用参与医疗急救的训练有素的护理人员所做的临时诊断记录,分析了10000多例COVID-19疑似重症病例的空间分布。我们识别出英国东米德兰兹地区出现的13个可能与COVID-19相关的重症集群,并对这些集群进行了深入分析,包括城乡动态、景观的物理特征和社会经济状况。我们的研究结果表明,VSID的动态变化取决于更广泛的地理位置。脆弱社区和地区出现在贫困程度更高的城市中心以及更富裕的城乡地区。这种方法有助于制定快速的全国性应对措施,以便在新出现的大流行期间实时支持脆弱社区,从而挽救生命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eeef/8559787/8fdcc8ad2cf8/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验