Suppr超能文献

使用患者特定条件和各向异性材料特性对胸段升主动脉进行全耦合流固耦合计算分析。

Fully-Coupled FSI Computational Analyses in the Ascending Thoracic Aorta Using Patient-Specific Conditions and Anisotropic Material Properties.

作者信息

Vignali Emanuele, Gasparotti Emanuele, Celi Simona, Avril Stéphane

机构信息

BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy.

Mines Saint-Etienne, Université de Lyon, INSERM, SaInBioSE U1059, Saint-Étienne, France.

出版信息

Front Physiol. 2021 Oct 20;12:732561. doi: 10.3389/fphys.2021.732561. eCollection 2021.

Abstract

Computational hemodynamics has become increasingly important within the context of precision medicine, providing major insight in cardiovascular pathologies. However, finding appropriate compromise between speed and accuracy remains challenging in computational hemodynamics for an extensive use in decision making. For example, in the ascending thoracic aorta, interactions between the blood and the aortic wall must be taken into account for the sake of accuracy, but these fluid structure interactions (FSI) induce significant computational costs, especially when the tissue exhibits a hyperelastic and anisotropic response. The objective of the current study is to use the Small On Large (SOL) theory to linearize the anisotropic hyperelastic behavior in order to propose a reduced-order model for FSI simulations of the aorta. The SOL method is tested for fully-coupled FSI simulations in a patient-specific aortic geometry presenting an Ascending Thoracic Aortic Aneurysm (aTAA). The same model is also simulated with a fully-coupled FSI with non-linear material behavior, without SOL linearization. Eventually, the results and computational times with and without the SOL are compared. The SOL approach is demonstrated to provide a significant reduction of computational costs for FSI analysis in the aTAA, and the results in terms of stress state distribution are comparable. The method is implemented in ANSYS and will be further evaluated for clinical applications.

摘要

在精准医学背景下,计算血液动力学变得越来越重要,为心血管疾病提供了重要见解。然而,在计算血液动力学中,要在速度和准确性之间找到适当的折衷方案,以便在决策中广泛应用,仍然具有挑战性。例如,在胸主动脉升段,为了保证准确性,必须考虑血液与主动脉壁之间的相互作用,但这些流固相互作用(FSI)会带来巨大的计算成本,特别是当组织表现出超弹性和各向异性响应时。本研究的目的是使用小在大上(SOL)理论将各向异性超弹性行为线性化,以便提出一种用于主动脉FSI模拟的降阶模型。在一个呈现胸主动脉升段动脉瘤(aTAA)的患者特异性主动脉几何模型中,对SOL方法进行了全耦合FSI模拟测试。同样的模型也使用具有非线性材料行为的全耦合FSI进行模拟,不进行SOL线性化。最后,比较了有无SOL时的结果和计算时间。结果表明,SOL方法显著降低了aTAA中FSI分析的计算成本,并且应力状态分布结果具有可比性。该方法已在ANSYS中实现,并将进一步评估其临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cda/8564074/cb1d041809e1/fphys-12-732561-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验