Suppr超能文献

检测关于抑郁症的患者健康信息神经机器翻译中的症状错误:开发可解释的贝叶斯机器学习分类器

Detecting Symptom Errors in Neural Machine Translation of Patient Health Information on Depressive Disorders: Developing Interpretable Bayesian Machine Learning Classifiers.

作者信息

Xie Wenxiu, Ji Meng, Zhao Mengdan, Zhou Tianqi, Yang Fan, Qian Xiaobo, Chow Chi-Yin, Lam Kam-Yiu, Hao Tianyong

机构信息

Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, SAR China.

School of Languages and Cultures, The University of Sydney, Darlington, NSW, Australia.

出版信息

Front Psychiatry. 2021 Oct 21;12:771562. doi: 10.3389/fpsyt.2021.771562. eCollection 2021.

Abstract

Due to its convenience, wide availability, low usage cost, neural machine translation (NMT) has increasing applications in diverse clinical settings and web-based self-diagnosis of diseases. Given the developing nature of NMT tools, this can pose safety risks to multicultural communities with limited bilingual skills, low education, and low health literacy. Research is needed to scrutinise the reliability, credibility, usability of automatically translated patient health information. We aimed to develop high-performing Bayesian machine learning classifiers to assist clinical professionals and healthcare workers in assessing the quality and usability of NMT on depressive disorders. The tool did not require any prior knowledge from frontline health and medical professionals of the target language used by patients. We used Relevance Vector Machine (RVM) to increase generalisability and clinical interpretability of classifiers. It is a typical sparse Bayesian classifier less prone to overfitting with small training datasets. We optimised RVM by leveraging automatic recursive feature elimination and expert feature refinement from the perspective of health linguistics. We evaluated the diagnostic utility of the Bayesian classifier under different probability cut-offs in terms of sensitivity, specificity, positive and negative likelihood ratios against clinical thresholds for diagnostic tests. Finally, we illustrated interpretation of RVM tool in clinic using Bayes' nomogram. After automatic and expert-based feature optimisation, the best-performing RVM classifier (RVM_DUFS12) gained the highest AUC (0.8872) among 52 competing models with distinct optimised, normalised features sets. It also had statistically higher sensitivity and specificity compared to other models. We evaluated the diagnostic utility of the best-performing model using Bayes' nomogram: it had a positive likelihood ratio (LR+) of 4.62 (95% C.I.: 2.53, 8.43), and the associated posterior probability (odds) was 83% (5.0) (95% C.I.: 73%, 90%), meaning that approximately 10 in 12 English texts with positive test are likely to contain information that would cause clinically significant conceptual errors if translated by Google; it had a negative likelihood ratio (LR-) of 0.18 (95% C.I.: 0.10,0.35) and associated posterior probability (odds) was 16% (0.2) (95% C.I: 10%, 27%), meaning that about 10 in 12 English texts with negative test can be safely translated using Google.

摘要

由于其便利性、广泛可用性和低使用成本,神经机器翻译(NMT)在各种临床环境和基于网络的疾病自我诊断中的应用越来越多。鉴于NMT工具的发展性质,这可能会给双语技能有限、教育程度低和健康素养低的多元文化社区带来安全风险。需要进行研究以审查自动翻译的患者健康信息的可靠性、可信度和可用性。我们旨在开发高性能的贝叶斯机器学习分类器,以协助临床专业人员和医护人员评估NMT在抑郁症方面的质量和可用性。该工具不需要一线健康和医疗专业人员具备患者所使用目标语言的任何先验知识。我们使用相关向量机(RVM)来提高分类器的泛化能力和临床可解释性。它是一种典型的稀疏贝叶斯分类器,在处理小训练数据集时不太容易出现过拟合。我们从健康语言学的角度利用自动递归特征消除和专家特征细化来优化RVM。我们根据针对诊断测试临床阈值的敏感性、特异性、阳性和阴性似然比,评估了不同概率截断值下贝叶斯分类器的诊断效用。最后,我们使用贝叶斯列线图说明了RVM工具在临床中的解释。经过基于自动和专家的特征优化后,性能最佳的RVM分类器(RVM_DUFS12)在52个具有不同优化、归一化特征集的竞争模型中获得了最高的AUC(0.8872)。与其他模型相比,它在统计学上也具有更高的敏感性和特异性。我们使用贝叶斯列线图评估了性能最佳模型的诊断效用:其阳性似然比(LR+)为4.62(95%置信区间:2.53,8.43),相关的后验概率(比值)为83%(5.0)(95%置信区间:73%,90%),这意味着如果由谷歌翻译,每12篇测试呈阳性的英文文本中约有10篇可能包含会导致具有临床意义的概念性错误的信息;其阴性似然比(LR-)为0.18(95%置信区间:0.10,0.35),相关的后验概率(比值)为16%(0.2)(95%置信区间:10%,27%),这意味着每12篇测试呈阴性的英文文本中约有10篇可以安全地使用谷歌进行翻译。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc22/8566668/d9070d5b2e15/fpsyt-12-771562-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验