Balan Jagadheshwar, Jenkinson Garrett, Nair Asha, Saha Neiladri, Koganti Tejaswi, Voss Jesse, Zysk Christopher, Barr Fritcher Emily G, Ross Christian A, Giannini Caterina, Raghunathan Aditya, Kipp Benjamin R, Jenkins Robert, Ida Cris, Halling Kevin C, Blackburn Patrick R, Dasari Surendra, Oliver Gavin R, Klee Eric W
Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States.
Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, United States.
Front Genet. 2021 Oct 22;12:739054. doi: 10.3389/fgene.2021.739054. eCollection 2021.
Detecting gene fusions involving driver oncogenes is pivotal in clinical diagnosis and treatment of cancer patients. Recent developments in next-generation sequencing (NGS) technologies have enabled improved assays for bioinformatics-based gene fusions detection. In clinical applications, where a small number of fusions are clinically actionable, targeted polymerase chain reaction (PCR)-based NGS chemistries, such as the QIAseq RNAscan assay, aim to improve accuracy compared to standard RNA sequencing. Existing informatics methods for gene fusion detection in NGS-based RNA sequencing assays traditionally use a transcriptome-based spliced alignment approach or a assembly approach. Transcriptome-based spliced alignment methods face challenges with short read mapping yielding low quality alignments. assembly-based methods yield longer contigs from short reads that can be more sensitive for genomic rearrangements, but face performance and scalability challenges. Consequently, there exists a need for a method to efficiently and accurately detect fusions in targeted PCR-based NGS chemistries. We describe SeekFusion, a highly accurate and computationally efficient pipeline enabling identification of gene fusions from PCR-based NGS chemistries. Utilizing biological samples processed with the QIAseq RNAscan assay and in-silico simulated data we demonstrate that SeekFusion gene fusion detection accuracy outperforms popular existing methods such as STAR-Fusion, TOPHAT-Fusion and JAFFA-hybrid. We also present results from 4,484 patient samples tested for neurological tumors and sarcoma, encompassing details on some novel fusions identified.
检测涉及驱动癌基因的基因融合对于癌症患者的临床诊断和治疗至关重要。下一代测序(NGS)技术的最新进展使得基于生物信息学的基因融合检测方法得到了改进。在临床应用中,少数融合在临床上具有可操作性,基于靶向聚合酶链反应(PCR)的NGS化学方法,如QIAseq RNAscan分析,旨在比标准RNA测序提高准确性。在基于NGS的RNA测序分析中,现有的基因融合检测信息学方法传统上使用基于转录组的剪接比对方法或组装方法。基于转录组的剪接比对方法在短读长映射方面面临挑战,导致比对质量较低。基于组装的方法从短读长中产生更长的重叠群,这对于基因组重排可能更敏感,但面临性能和可扩展性挑战。因此,需要一种方法来高效、准确地检测基于靶向PCR的NGS化学方法中的融合。我们描述了SeekFusion,这是一种高度准确且计算效率高的流程,能够从基于PCR的NGS化学方法中识别基因融合。利用用QIAseq RNAscan分析处理的生物样本和计算机模拟数据,我们证明SeekFusion基因融合检测准确性优于现有的流行方法,如STAR-Fusion、TOPHAT-Fusion和JAFFA-hybrid。我们还展示了对4484例神经肿瘤和肉瘤患者样本进行检测的结果,包括一些鉴定出的新型融合的详细信息。