Refaee Amir, Kelly Corey J, Moradi Hamid, Salcudean Septimiu E
University of British Columbia, Department of Electrical and Computer Engineering, Vancouver, British Columbia, Canada.
Equal Authorship Contribution.
Biomed Opt Express. 2021 Sep 13;12(10):6184-6204. doi: 10.1364/BOE.431997. eCollection 2021 Oct 1.
We have trained generative adversarial networks (GANs) to mimic both the effect of temporal averaging and of singular value decomposition (SVD) denoising. This effectively removes noise and acquisition artifacts and improves signal-to-noise ratio (SNR) in both the radio-frequency (RF) data and in the corresponding photoacoustic reconstructions. The method allows a single frame acquisition instead of averaging multiple frames, reducing scan time and total laser dose significantly. We have tested this method on experimental data, and quantified the improvement over using either SVD denoising or frame averaging individually for both the RF data and the reconstructed images. We achieve a mean squared error (MSE) of 0.05%, structural similarity index measure (SSIM) of 0.78, and a feature similarity index measure (FSIM) of 0.85 compared to our ground-truth RF results. In the subsequent reconstructions using the denoised data we achieve a MSE of 0.05%, SSIM of 0.80, and a FSIM of 0.80 compared to our ground-truth reconstructions.
我们训练了生成对抗网络(GAN)来模拟时间平均和奇异值分解(SVD)去噪的效果。这有效地去除了噪声和采集伪影,并提高了射频(RF)数据以及相应光声重建中的信噪比(SNR)。该方法允许单帧采集,而不是对多帧进行平均,从而显著减少扫描时间和总激光剂量。我们已在实验数据上测试了此方法,并量化了相对于单独使用SVD去噪或帧平均处理RF数据和重建图像所带来的改进。与我们的真实RF结果相比,我们实现了0.05%的均方误差(MSE)、0.78的结构相似性指数测量(SSIM)和0.85的特征相似性指数测量(FSIM)。在使用去噪后的数据进行后续重建时,与我们的真实重建结果相比,我们实现了0.05%的MSE、0.80的SSIM和0.80的FSIM。