Venkatasubramaniam Ashwini, Koch Brandon, Erickson Lauren, French Simone, Vock David, Wolfson Julian
522468The Alan Turing Institute, The British Library, London, UK.
School of Community Health Sciences, 6851University of Nevada, Reno, USA.
Stat Methods Med Res. 2022 Mar;31(3):549-562. doi: 10.1177/09622802211052831. Epub 2021 Nov 8.
Treatment effect heterogeneity occurs when individual characteristics influence the effect of a treatment. We propose a novel approach that combines prognostic score matching and conditional inference trees to characterize effect heterogeneity of a randomized binary treatment. One key feature that distinguishes our method from alternative approaches is that it controls the Type I error rate, that is, the probability of identifying effect heterogeneity if none exists and retains the underlying subgroups. This feature makes our technique particularly appealing in the context of clinical trials, where there may be significant costs associated with erroneously declaring that effects differ across population subgroups. Treatment effect heterogeneity trees are able to identify heterogeneous subgroups, characterize the relevant subgroups and estimate the associated treatment effects. We demonstrate the efficacy of the proposed method using a comprehensive simulation study and illustrate our method using a nutrition trial dataset to evaluate effect heterogeneity within a patient population.
当个体特征影响治疗效果时,就会出现治疗效果异质性。我们提出了一种新颖的方法,该方法结合了预后评分匹配和条件推断树来表征随机二元治疗的效果异质性。我们的方法与其他方法的一个关键区别在于,它控制了I型错误率,即不存在效果异质性时识别出效果异质性的概率,并保留了潜在的亚组。这一特性使得我们的技术在临床试验中特别有吸引力,因为错误地宣称不同人群亚组的效果不同可能会带来巨大成本。治疗效果异质性树能够识别异质性亚组,表征相关亚组并估计相关的治疗效果。我们通过全面的模拟研究证明了所提出方法的有效性,并使用营养试验数据集来说明我们的方法,以评估患者群体中的效果异质性。