Suppr超能文献

预测热带登革热病例数的精确数学模型。

An accurate mathematical model predicting number of dengue cases in tropics.

机构信息

Department of Computer Engineering, Faculty of Engineering, University of Peradeniya, Sri Lanka.

Department of Medicine, Faculty of Medicine, University of Peradeniya, Sri Lanka.

出版信息

PLoS Negl Trop Dis. 2021 Nov 8;15(11):e0009756. doi: 10.1371/journal.pntd.0009756. eCollection 2021 Nov.

Abstract

Dengue fever is a systemic viral infection of epidemic proportions in tropical countries. The incidence of dengue fever is ever increasing and has doubled over the last few decades. Estimated 50million new cases are detected each year and close to 10000 deaths occur each year. Epidemics are unpredictable and unprecedented. When epidemics occur, health services are over whelmed leading to overcrowding of hospitals. At present there is no evidence that dengue epidemics can be predicted. Since the breeding of the dengue mosquito is directly influenced by environmental factors, it is plausible that epidemics could be predicted using weather data. We hypothesized that there is a mathematical relationship between incidence of dengue fever and environmental factors and if such relationship exists, new cases of dengue fever in the succeeding months can be predicted using weather data of the current month. We developed a mathematical model using machine learning technique. We used Island wide dengue epidemiology data, weather data and population density in developing the model. We used incidence of dengue fever, average rain fall, humidity, wind speed, temperature and population density of each district in the model. We found that the model is able to predict the incidence of dengue fever of a given month in a given district with precision (RMSE between 18- 35.3). Further, using weather data of a given month, the number of cases of dengue in succeeding months too can be predicted with precision (RMSE 10.4-30). Health authorities can use existing weather data in predicting epidemics in the immediate future and therefore measures to prevent new cases can be taken and more importantly the authorities can prepare local authorities for outbreaks.

摘要

登革热是一种在热带国家流行的全身性病毒感染。登革热的发病率一直在增加,在过去几十年中翻了一番。估计每年有 5000 万例新病例被发现,每年有近 1 万人死亡。疫情不可预测,前所未有。当疫情发生时,卫生服务不堪重负,导致医院人满为患。目前没有证据表明登革热疫情可以预测。由于登革热蚊子的繁殖直接受到环境因素的影响,因此使用天气数据预测疫情是合理的。我们假设登革热发病率与环境因素之间存在数学关系,如果存在这种关系,那么可以使用当前月份的天气数据来预测未来几个月的登革热新病例。我们使用机器学习技术开发了一个数学模型。我们使用全岛登革热流行病学数据、天气数据和人口密度来开发该模型。我们在模型中使用了每个地区的登革热发病率、平均降雨量、湿度、风速、温度和人口密度。我们发现,该模型能够以较高的精度(均方根误差在 18-35.3 之间)预测给定地区给定月份的登革热发病率。此外,使用给定月份的天气数据,也可以精确预测随后几个月的登革热病例数(均方根误差为 10.4-30)。卫生当局可以利用现有的天气数据来预测近期的疫情,从而采取措施预防新病例的出现,更重要的是,当局可以为疫情爆发做好当地当局的准备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6d/8575180/b5c29a7cdc94/pntd.0009756.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验