Suppr超能文献

医疗技术:用于癫痫预测和管理的医疗器械的系统评价。

Medical Technology: A Systematic Review on Medical Devices Utilized for Epilepsy Prediction and Management.

机构信息

Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.

School of Medicine, Queen's University Belfast, Belfast, United Kingdom.

出版信息

Curr Neuropharmacol. 2022;20(5):950-964. doi: 10.2174/1570159X19666211108153001.

Abstract

BACKGROUND

Epilepsy is a devastating neurological disorder that affects nearly 70 million people worldwide. Epilepsy causes uncontrollable, unprovoked and unpredictable seizures that reduce the quality of life of those afflicted, with 1-9 epileptic patient deaths per 1000 patients occurring annually due to sudden unexpected death in epilepsy (SUDEP). Predicting the onset of seizures and managing them may help patients from harming themselves and may improve their well-being. For a long time, electroencephalography (EEG) devices have been the mainstay for seizure detection and monitoring. This systematic review aimed to elucidate and critically evaluate the latest advancements in medical devices, besides EEG, that have been proposed for the management and prediction of epileptic seizures. A literature search was performed on three databases, PubMed, Scopus and EMBASE.

METHODS

Following title/abstract screening by two independent reviewers, 27 articles were selected for critical analysis in this review.

RESULTS

These articles revealed ambulatory, non-invasive and wearable medical devices, such as the in-ear EEG devices; the accelerometer-based devices and the subcutaneous implanted EEG devices might be more acceptable than traditional EEG systems. In addition, extracerebral signalbased devices may be more efficient than EEG-based systems, especially when combined with an intervention trigger. Although further studies may still be required to improve and validate these proposed systems before commercialization, these findings may give hope to epileptic patients, particularly those with refractory epilepsy, to predict and manage their seizures.

CONCLUSION

The use of medical devices for epilepsy may improve patients' independence and quality of life and possibly prevent sudden unexpected death in epilepsy (SUDEP).

摘要

背景

癫痫是一种严重的神经系统疾病,影响着全球近 7000 万人。癫痫会导致无法控制、无端和不可预测的发作,降低患者的生活质量,每年有 1-9 名癫痫患者因癫痫猝死(SUDEP)而意外死亡。预测癫痫发作并加以管理可能有助于患者免受伤害,并改善其健康状况。长期以来,脑电图(EEG)设备一直是癫痫发作检测和监测的主要手段。本系统评价旨在阐明和批判性评估除 EEG 以外的最新医疗设备进展,这些设备已被提议用于管理和预测癫痫发作。在三个数据库(PubMed、Scopus 和 EMBASE)上进行了文献检索。

方法

两名独立评审员进行标题/摘要筛选后,有 27 篇文章被选入本综述进行批判性分析。

结果

这些文章揭示了一些可移动、非侵入性和可穿戴的医疗设备,如耳内 EEG 设备;基于加速度计的设备和皮下植入 EEG 设备可能比传统 EEG 系统更能被接受。此外,基于脑外信号的设备可能比基于 EEG 的系统更有效,尤其是与干预触发相结合时。虽然在这些拟议系统商业化之前可能还需要进一步的研究来改进和验证,但这些发现可能为癫痫患者带来希望,尤其是那些难治性癫痫患者,他们可以预测和管理自己的发作。

结论

使用医疗设备治疗癫痫可能会提高患者的独立性和生活质量,并可能预防癫痫猝死(SUDEP)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358c/9881104/96b2856986b5/CN-20-950_F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验