Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
Department of Physics, Philipps-Universität Marburg, Marburg, Germany.
Elife. 2021 Nov 9;10:e70794. doi: 10.7554/eLife.70794.
Bacteria commonly live in spatially structured biofilm assemblages, which are encased by an extracellular matrix. Metabolic activity of the cells inside biofilms causes gradients in local environmental conditions, which leads to the emergence of physiologically differentiated subpopulations. Information about the properties and spatial arrangement of such metabolic subpopulations, as well as their interaction strength and interaction length scales are lacking, even for model systems like colony biofilms grown on agar-solidified media. Here, we use an unbiased approach, based on temporal and spatial transcriptome and metabolome data acquired during colony biofilm growth, to study the spatial organization of metabolism. We discovered that alanine displays a unique pattern among amino acids and that alanine metabolism is spatially and temporally heterogeneous. At the anoxic base of the colony, where carbon and nitrogen sources are abundant, cells secrete alanine the transporter AlaE. In contrast, cells utilize alanine as a carbon and nitrogen source in the oxic nutrient-deprived region at the colony mid-height, the enzymes DadA and DadX. This spatially structured alanine cross-feeding influences cellular viability and growth in the cross-feeding-dependent region, which shapes the overall colony morphology. More generally, our results on this precisely controllable biofilm model system demonstrate a remarkable spatiotemporal complexity of metabolism in biofilms. A better characterization of the spatiotemporal metabolic heterogeneities and dependencies is essential for understanding the physiology, architecture, and function of biofilms.
细菌通常生活在空间结构的生物膜集合体中,这些集合体被细胞外基质包裹。生物膜内细胞的代谢活动导致局部环境条件的梯度变化,从而导致生理上分化的亚群的出现。即使对于像在琼脂固化培养基上生长的菌落生物膜这样的模型系统,关于这些代谢亚群的性质和空间排列以及它们的相互作用强度和相互作用长度尺度的信息也缺乏。在这里,我们使用一种基于时间和空间转录组和代谢组数据的无偏方法,在菌落生物膜生长过程中获取这些数据,来研究代谢的空间组织。我们发现,丙氨酸在氨基酸中表现出独特的模式,并且丙氨酸代谢在空间和时间上是不均匀的。在菌落的缺氧底部,碳氮源丰富,细胞分泌丙氨酸,由转运蛋白 AlaE 完成。相比之下,细胞在菌落中部的含氧贫营养区利用丙氨酸作为碳氮源,由酶 DadA 和 DadX 完成。这种空间结构的丙氨酸交叉喂养影响依赖交叉喂养的区域中的细胞活力和生长,从而塑造整个菌落形态。更一般地说,我们在这个精确可控的生物膜模型系统上的结果表明,生物膜中的代谢具有显著的时空复杂性。更好地表征时空代谢异质性和依赖性对于理解生物膜的生理学、结构和功能至关重要。