Department of Applied Physics and Physico-Informatics, Keio University.
Keio Institute of Pure and Applied Science, Keio University.
Proc Jpn Acad Ser B Phys Biol Sci. 2021;97(9):499-519. doi: 10.2183/pjab.97.025.
An emerging field of spintronics, spin-orbitronics, aims to discover novel phenomena and functionalities originating from spin-orbit coupling in solid-state devices. The development of spin-orbitronics promises a fundamental understanding of spin physics in condensed matter, as well as smaller, faster, and far-more energy-efficient spin-based devices. Of particular importance in this field is current-induced spin-orbit torques, which trigger magnetic dynamics by the transfer of angular momentum from an atomic lattice to local magnetization through the spin-orbit coupling. The spin-orbit torque has attracted extensive attention for its fascinating relativistic and quantum mechanical nature, as well as prospective nanoelectronic applications. In this article, we review our studies on the generation and manipulation of current-induced spin-orbit torques.
自旋电子学的一个新兴领域——自旋轨道电子学,旨在发现源于固态器件中自旋轨道耦合的新现象和新功能。自旋轨道电子学的发展有望从根本上理解凝聚态物质中的自旋物理学,以及更小、更快、更节能的基于自旋的器件。在这个领域中,特别重要的是电流诱导的自旋轨道扭矩,它通过自旋轨道耦合将角动量从原子晶格传递到局部磁化,从而引发磁动力学。自旋轨道扭矩因其迷人的相对论和量子力学性质以及有前景的纳米电子应用而引起了广泛关注。在本文中,我们回顾了我们在电流诱导的自旋轨道扭矩的产生和控制方面的研究。